mnist.py 6.14 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
3
4
5
6
7
"""
A deep MNIST classifier using convolutional layers.

This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""

chicm-ms's avatar
chicm-ms committed
8
import os
Guoxin's avatar
Guoxin committed
9
10
11
12
13
14
15
16
17
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

chicm-ms's avatar
chicm-ms committed
18
19
20
21
22
23
24
# Temporary patch this example until the MNIST dataset download issue get resolved
# https://github.com/pytorch/vision/issues/1938
import urllib

opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
Guoxin's avatar
Guoxin committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

logger = logging.getLogger('mnist_AutoML')


class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, hidden_size)
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args['log_interval'] == 0:
            logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    accuracy = 100. * correct / len(test_loader.dataset)

    logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset), accuracy))

    return accuracy


def main(args):
    use_cuda = not args['no_cuda'] and torch.cuda.is_available()

    torch.manual_seed(args['seed'])

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
chicm-ms's avatar
chicm-ms committed
95
96
97

    data_dir = os.path.join(args['data_dir'], nni.get_trial_id())

Guoxin's avatar
Guoxin committed
98
    train_loader = torch.utils.data.DataLoader(
chicm-ms's avatar
chicm-ms committed
99
        datasets.MNIST(data_dir, train=True, download=True,
Guoxin's avatar
Guoxin committed
100
101
102
103
104
105
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args['batch_size'], shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
chicm-ms's avatar
chicm-ms committed
106
        datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=1000, shuffle=True, **kwargs)

    hidden_size = args['hidden_size']

    model = Net(hidden_size=hidden_size).to(device)
    optimizer = optim.SGD(model.parameters(), lr=args['lr'],
                          momentum=args['momentum'])

    for epoch in range(1, args['epochs'] + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test_acc = test(args, model, device, test_loader)

122
123
124
125
126
127
128
129
130
131
        if epoch < args['epochs']:
            # report intermediate result
            nni.report_intermediate_result(test_acc)
            logger.debug('test accuracy %g', test_acc)
            logger.debug('Pipe send intermediate result done.')
        else:
            # report final result
            nni.report_final_result(test_acc)
            logger.debug('Final result is %g', test_acc)
            logger.debug('Send final result done.')
Guoxin's avatar
Guoxin committed
132
133
134
135
136
137


def get_params():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument("--data_dir", type=str,
138
                        default='/tmp/pytorch/mnist/input_data', help="data directory")
Guoxin's avatar
Guoxin committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    parser.add_argument('--batch_size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
                        help='hidden layer size (default: 512)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--no_cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
                        help='how many batches to wait before logging training status')


    args, _ = parser.parse_known_args()
    return args


if __name__ == '__main__':
    try:
        # get parameters form tuner
        tuner_params = nni.get_next_parameter()
        logger.debug(tuner_params)
        params = vars(get_params())
        params.update(tuner_params)
        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise