test_transformer_pruners.py 5.11 KB
Newer Older
Bill Wu's avatar
Bill Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import math
import sys
import unittest
from unittest import TestCase, main

from nni.algorithms.compression.pytorch.pruning import TransformerHeadPruner

16
17
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
from ut.sdk.models.pytorch_models.transformer import TransformerEncoder
Bill Wu's avatar
Bill Wu committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140


def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg


class Model(nn.Module):
    """
    A binary classifier using a transformer encoder for contextual embedding.
    """
    def __init__(self, n_layer, hidden_dim, n_head):
        super(Model, self).__init__()
        self.embedding = TransformerEncoder(vocab_size=100, hidden_dim=hidden_dim, n_layers=n_layer, n_heads=n_head)
        self.classifier = nn.Linear(hidden_dim, 1)

    def forward(self, x, mask):
        raw_output = self.embedding(x, mask)
        pooled_output = raw_output[0]
        prediction = F.sigmoid(self.classifier(pooled_output)).squeeze()
        return prediction


def train(model, dataloader, criterion, optimizer):
    model.train()
    device = next(model.parameters()).device
    for _ in range(2):
        y = torch.ones(10).to(device)
        out = model(torch.randint(0, 100, (4, 10)).to(device), torch.ones(10).to(device))
        loss = criterion(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


def dry_run(model):
    device = next(model.parameters()).device
    for _ in range(2):
        y = torch.ones(10).to(device)
        _ = model(torch.randint(0, 100, (4, 10)).to(device), torch.ones(10).to(device))


def head_pruner_tests(criterion, global_sort, use_graph, iterative):
    print("Testing criterion {} with global_sort={} and use_graph={}".format(criterion, global_sort, use_graph))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Build config list and arguments
    config_list = [{'sparsity': 0.5, 'op_types': ['Linear']}]

    kwargs = {'ranking_criterion': criterion, 'head_hidden_dim': 64}
    if global_sort:
        kwargs['global_sort'] = True
    else:
        kwargs['global_sort'] = False

    if use_graph:
        attention_name_groups = list(zip(['embedding.layers.{}.self_attn.q_proj'.format(i) for i in range(6)],
                                         ['embedding.layers.{}.self_attn.k_proj'.format(i) for i in range(6)],
                                         ['embedding.layers.{}.self_attn.v_proj'.format(i) for i in range(6)],
                                         ['embedding.layers.{}.self_attn.output_proj'.format(i) for i in range(6)]))
        kwargs['attention_name_groups'] = attention_name_groups
    else:
        dummy_input = (torch.randint(0, 100, (10, 32)).to(device), torch.ones(32).to(device))
        kwargs['dummy_input'] = dummy_input

    if iterative:
        kwargs['num_iterations'] = 2
        kwargs['epochs_per_iteration'] = 1

    n_layers = 6
    n_heads = 8
    hidden_dim = 512
    model = Model(n_layers, hidden_dim, n_heads)
    model.to(device)
    kwargs['optimizer'] = torch.optim.SGD(model.parameters(), lr=0.001)

    def trainer(model, optimizer, criterion, epoch):
        return train(model, None, criterion, optimizer)
    kwargs['trainer'] = trainer
    kwargs['criterion'] = nn.BCELoss()

    def forward_runner(model):
        return dry_run(model)
    kwargs['forward_runner'] = forward_runner

    # create pruner and call compress()
    pruner = TransformerHeadPruner(model, config_list, **kwargs)
    pruner.compress()

    # test model and mask export
    pruner.export_model('./model_tmp.pth', './mask_tmp.pth', device=device)
    dummy_input = (torch.randint(0, 100, (10, 32)).to(device), torch.ones(32).to(device))
    pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth',
                        dummy_input=dummy_input, opset_version=10)

    # validate sparsity
    if not global_sort:
        for wrapper in pruner.modules_wrapper:
            validate_sparsity(wrapper, wrapper.config['sparsity'])


class PrunerTestCase(TestCase):
    def test_head_pruner(self):
        for criterion in ["l1_weight", "l2_weight", "l1_activation", "l2_activation", "taylorfo"]:
            for global_sort in [False, True]:
                for use_graph in [False, True]:
                    for iterative in [False, True]:
                        head_pruner_tests(criterion, global_sort, use_graph, iterative)

        file_paths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', './search_history.csv',
                      './search_result.json']
        for f in file_paths:
            if os.path.exists(f):
                os.remove(f)


if __name__ == '__main__':
    main()