test_pruners.py 11.6 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
8
import torch.utils.data
chicm-ms's avatar
chicm-ms committed
9
import math
10
11
import sys
import unittest
chicm-ms's avatar
chicm-ms committed
12
from unittest import TestCase, main
13
from nni.algorithms.compression.pytorch.pruning import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
14
    L2FilterPruner, AGPPruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner, \
15
16
    TaylorFOWeightFilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner, \
    AutoCompressPruner, AMCPruner
17

18
19
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
from ut.sdk.models.pytorch_models.mobilenet import MobileNet
chicm-ms's avatar
chicm-ms committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
43
        'pruner_class': AGPPruner,
chicm-ms's avatar
chicm-ms committed
44
        'config_list': [{
45
            'sparsity': 0.8,
46
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
47
        }],
48
        'trainer': lambda model, optimizer, criterion, epoch: model,
chicm-ms's avatar
chicm-ms committed
49
50
51
52
53
54
55
56
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
57
        'trainer': lambda model, optimizer, criterion, epoch: model,
chicm-ms's avatar
chicm-ms committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
92
93
94
95
96
97
    'taylorfo': {
        'pruner_class': TaylorFOWeightFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
98
        'trainer': lambda model, optimizer, criterion, epoch: model,
99
100
101
102
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
chicm-ms's avatar
chicm-ms committed
103
104
105
106
107
108
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
109
        'trainer': lambda model, optimizer, criterion, epoch: model,
chicm-ms's avatar
chicm-ms committed
110
111
112
113
114
115
116
117
118
119
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
120
        'trainer': lambda model, optimizer, criterion, epoch: model,
chicm-ms's avatar
chicm-ms committed
121
122
123
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
Guoxin's avatar
Guoxin committed
124
125
126
127
128
129
130
    },
    'netadapt': {
        'pruner_class': NetAdaptPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
131
        'short_term_fine_tuner': lambda model: model, 
Guoxin's avatar
Guoxin committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'simulatedannealing': {
        'pruner_class': SimulatedAnnealingPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'admm': {
        'pruner_class': ADMMPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
150
        'trainer': lambda model, optimizer, criterion, epoch : model, 
Guoxin's avatar
Guoxin committed
151
152
153
154
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
155
    'autocompress_l1': {
Guoxin's avatar
Guoxin committed
156
157
158
159
160
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
161
        'base_algo': 'l1',
162
        'trainer': lambda model, optimizer, criterion, epoch : model,
163
164
165
166
167
168
169
170
171
172
173
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
    },
    'autocompress_l2': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'base_algo': 'l2',
174
        'trainer': lambda model, optimizer, criterion, epoch : model,
175
176
177
178
179
180
181
182
183
184
185
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
    },
    'autocompress_fpgm': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'base_algo': 'fpgm',
186
        'trainer': lambda model, optimizer, criterion, epoch : model,
Guoxin's avatar
Guoxin committed
187
188
189
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
190
191
192
193
194
195
    },
    'amc': {
        'pruner_class': AMCPruner,
        'config_list':[{
            'op_types': ['Conv2d', 'Linear']
        }]
chicm-ms's avatar
chicm-ms committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
class SimpleDataset:
    def __getitem__(self, index):
        return torch.randn(3, 32, 32), 1.

    def __len__(self):
        return 1000

def train(model, train_loader, criterion, optimizer):
    model.train()
    device = next(model.parameters()).device
    x = torch.randn(2, 1, 28, 28).to(device)
    y = torch.tensor([0, 1]).long().to(device)
    # print('hello...')

    for _ in range(2):
        out = model(x)
        loss = criterion(out, y)
        optimizer.zero_grad()
        loss.backward()

        optimizer.step()

232
def pruners_test(pruner_names=['level', 'agp', 'slim', 'fpgm', 'l1', 'l2', 'taylorfo', 'mean_activation', 'apoz', 'netadapt', 'simulatedannealing', 'admm', 'autocompress_l1', 'autocompress_l2', 'autocompress_fpgm',], bias=True):
233
234
235
236
237
238
239
240
241
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dummy_input = torch.randn(2, 1, 28, 28).to(device)

    criterion = torch.nn.CrossEntropyLoss()
    train_loader = torch.utils.data.DataLoader(SimpleDataset(), batch_size=16, shuffle=False, drop_last=True)

    def trainer(model, optimizer, criterion, epoch):
        return train(model, train_loader, criterion, optimizer)

chicm-ms's avatar
chicm-ms committed
242
    for pruner_name in pruner_names:
Guoxin's avatar
Guoxin committed
243
        print('testing {}...'.format(pruner_name))
244

Guoxin's avatar
Guoxin committed
245
        model = Model(bias=bias).to(device)
chicm-ms's avatar
chicm-ms committed
246
247
248
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

Guoxin's avatar
Guoxin committed
249
250
251
252
        if pruner_name == 'netadapt':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, short_term_fine_tuner=prune_config[pruner_name]['short_term_fine_tuner'], evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'simulatedannealing':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, evaluator=prune_config[pruner_name]['evaluator'])
253
254
        elif pruner_name in ('agp', 'slim', 'taylorfo', 'apoz', 'mean_activation'):
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=trainer, optimizer=optimizer, criterion=criterion)
Guoxin's avatar
Guoxin committed
255
        elif pruner_name == 'admm':
256
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=trainer)
257
        elif pruner_name.startswith('autocompress'):
258
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'], evaluator=prune_config[pruner_name]['evaluator'], criterion=torch.nn.CrossEntropyLoss(), dummy_input=dummy_input, base_algo=prune_config[pruner_name]['base_algo'])
Guoxin's avatar
Guoxin committed
259
        else:
260
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list)
261

262
        pruner.compress()
Guoxin's avatar
Guoxin committed
263
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28), device=device)
chicm-ms's avatar
chicm-ms committed
264
265
266
267

        for v in prune_config[pruner_name]['validators']:
            v(model)

Guoxin's avatar
Guoxin committed
268
269
270
271
    filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', './search_history.csv', './search_result.json']
    for f in filePaths:
        if os.path.exists(f):
            os.remove(f)
chicm-ms's avatar
chicm-ms committed
272

273

274
275
276
277
def _test_agp(pruning_algorithm):
    train_loader = torch.utils.data.DataLoader(SimpleDataset(), batch_size=16, shuffle=False, drop_last=True)
    model = Model()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
278

279
280
    def trainer(model, optimizer, criterion, epoch):
        return train(model, train_loader, criterion, optimizer)
281

282
283
284
    config_list = prune_config['agp']['config_list']
    pruner = AGPPruner(model, config_list, optimizer=optimizer, trainer=trainer, criterion=torch.nn.CrossEntropyLoss(), pruning_algorithm=pruning_algorithm)
    pruner.compress()
285

286
287
288
289
    target_sparsity = pruner.compute_target_sparsity(config_list[0])
    actual_sparsity = (model.conv1.weight_mask == 0).sum().item() / model.conv1.weight_mask.numel()
    # set abs_tol = 0.2, considering the sparsity error for channel pruning when number of channels is small.
    assert math.isclose(actual_sparsity, target_sparsity, abs_tol=0.2)
290
291


chicm-ms's avatar
chicm-ms committed
292
293
294
295
296
297
298
class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

299
    def test_agp_pruner(self):
300
        for pruning_algorithm in ['l1', 'l2', 'fpgm', 'taylorfo', 'apoz']:
301
            _test_agp(pruning_algorithm)
302
303
304

        for pruning_algorithm in ['level']:
            prune_config['agp']['config_list'][0]['op_types'] = ['default']
305
            _test_agp(pruning_algorithm)
306

307
308
309
310
311
312
313
314
315
316
    def testAMC(self):
        model = MobileNet(n_class=10)

        def validate(val_loader, model):
            return 80.
        val_loader = torch.utils.data.DataLoader(SimpleDataset(), batch_size=16, shuffle=False, drop_last=True)
        config_list = prune_config['amc']['config_list']
        pruner = AMCPruner(model, config_list, validate, val_loader, train_episode=1)
        pruner.compress()

chicm-ms's avatar
chicm-ms committed
317
318
319
320
321
322
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,3,32,32))
        filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth']
        for f in filePaths:
            if os.path.exists(f):
                os.remove(f)

chicm-ms's avatar
chicm-ms committed
323
324
if __name__ == '__main__':
    main()