model.rst 6.95 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
:orphan:

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/hpo_nnictl/model.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_hpo_nnictl_model.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_hpo_nnictl_model.py:


Port PyTorch Quickstart to NNI
==============================
This is a modified version of `PyTorch quickstart`_.

It can be run directly and will have the exact same result as original version.

Furthermore, it enables the ability of auto tuning with an NNI *experiment*, which will be detailed later.

It is recommended to run this script directly first to verify the environment.

There are 2 key differences from the original version:

1. In `Get optimized hyperparameters`_ part, it receives generated hyperparameters.
2. In `Train model and report accuracy`_ part, it reports accuracy metrics to NNI.

.. _PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

.. GENERATED FROM PYTHON SOURCE LINES 21-28

.. code-block:: default

    import nni
    import torch
    from torch import nn
    from torch.utils.data import DataLoader
    from torchvision import datasets
    from torchvision.transforms import ToTensor








.. GENERATED FROM PYTHON SOURCE LINES 29-32

Hyperparameters to be tuned
---------------------------
These are the hyperparameters that will be tuned.

.. GENERATED FROM PYTHON SOURCE LINES 32-38

.. code-block:: default

    params = {
        'features': 512,
        'lr': 0.001,
        'momentum': 0,
    }








.. GENERATED FROM PYTHON SOURCE LINES 39-43

Get optimized hyperparameters
-----------------------------
If run directly, :func:`nni.get_next_parameter` is a no-op and returns an empty dict.
But with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm.

.. GENERATED FROM PYTHON SOURCE LINES 43-47

.. code-block:: default

    optimized_params = nni.get_next_parameter()
    params.update(optimized_params)
    print(params)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    {'features': 512, 'lr': 0.001, 'momentum': 0}




.. GENERATED FROM PYTHON SOURCE LINES 48-50

Load dataset
------------

.. GENERATED FROM PYTHON SOURCE LINES 50-58

.. code-block:: default

    training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
    test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())

    batch_size = 64

    train_dataloader = DataLoader(training_data, batch_size=batch_size)
    test_dataloader = DataLoader(test_data, batch_size=batch_size)








.. GENERATED FROM PYTHON SOURCE LINES 59-61

Build model with hyperparameters
--------------------------------

.. GENERATED FROM PYTHON SOURCE LINES 61-86

.. code-block:: default

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using {device} device")

    class NeuralNetwork(nn.Module):
        def __init__(self):
            super(NeuralNetwork, self).__init__()
            self.flatten = nn.Flatten()
            self.linear_relu_stack = nn.Sequential(
                nn.Linear(28*28, params['features']),
                nn.ReLU(),
                nn.Linear(params['features'], params['features']),
                nn.ReLU(),
                nn.Linear(params['features'], 10)
            )

        def forward(self, x):
            x = self.flatten(x)
            logits = self.linear_relu_stack(x)
            return logits

    model = NeuralNetwork().to(device)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum'])





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Using cpu device




.. GENERATED FROM PYTHON SOURCE LINES 87-89

Define train and test
---------------------

.. GENERATED FROM PYTHON SOURCE LINES 89-115

.. code-block:: default

    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)
        model.train()
        for batch, (X, y) in enumerate(dataloader):
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

    def test(dataloader, model, loss_fn):
        size = len(dataloader.dataset)
        num_batches = len(dataloader)
        model.eval()
        test_loss, correct = 0, 0
        with torch.no_grad():
            for X, y in dataloader:
                X, y = X.to(device), y.to(device)
                pred = model(X)
                test_loss += loss_fn(pred, y).item()
                correct += (pred.argmax(1) == y).type(torch.float).sum().item()
        test_loss /= num_batches
        correct /= size
        return correct








.. GENERATED FROM PYTHON SOURCE LINES 116-119

Train model and report accuracy
-------------------------------
Report accuracy metrics to NNI so the tuning algorithm can suggest better hyperparameters.

.. GENERATED FROM PYTHON SOURCE LINES 119-126

.. code-block:: default

    epochs = 5
    for t in range(epochs):
        print(f"Epoch {t+1}\n-------------------------------")
        train(train_dataloader, model, loss_fn, optimizer)
        accuracy = test(test_dataloader, model, loss_fn)
        nni.report_intermediate_result(accuracy)
    nni.report_final_result(accuracy)




.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Epoch 1
    -------------------------------
    [2022-03-21 01:09:37] INFO (nni/MainThread) Intermediate result: 0.461  (Index 0)
    Epoch 2
    -------------------------------
    [2022-03-21 01:09:42] INFO (nni/MainThread) Intermediate result: 0.5529  (Index 1)
    Epoch 3
    -------------------------------
    [2022-03-21 01:09:47] INFO (nni/MainThread) Intermediate result: 0.6155  (Index 2)
    Epoch 4
    -------------------------------
    [2022-03-21 01:09:52] INFO (nni/MainThread) Intermediate result: 0.6345  (Index 3)
    Epoch 5
    -------------------------------
    [2022-03-21 01:09:56] INFO (nni/MainThread) Intermediate result: 0.6505  (Index 4)
    [2022-03-21 01:09:56] INFO (nni/MainThread) Final result: 0.6505





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  24.441 seconds)


.. _sphx_glr_download_tutorials_hpo_nnictl_model.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: model.py <model.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: model.ipynb <model.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_