KubeflowMode.rst 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Run an Experiment on Kubeflow
=============================

===

Now NNI supports running experiment on `Kubeflow <https://github.com/kubeflow/kubeflow>`__\ , called kubeflow mode. Before starting to use NNI kubeflow mode, you should have a Kubernetes cluster, either on-premises or `Azure Kubernetes Service(AKS) <https://azure.microsoft.com/en-us/services/kubernetes-service/>`__\ , a Ubuntu machine on which `kubeconfig <https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/>`__ is setup to connect to your Kubernetes cluster. If you are not familiar with Kubernetes, `here <https://kubernetes.io/docs/tutorials/kubernetes-basics/>`__ is a good start. In kubeflow mode, your trial program will run as Kubeflow job in Kubernetes cluster.

Prerequisite for on-premises Kubernetes Service
-----------------------------------------------


#. A **Kubernetes** cluster using Kubernetes 1.8 or later. Follow this `guideline <https://kubernetes.io/docs/setup/>`__ to set up Kubernetes
#. Download, set up, and deploy **Kubeflow** to your Kubernetes cluster. Follow this `guideline <https://www.kubeflow.org/docs/started/getting-started/>`__ to setup Kubeflow.
#. Prepare a **kubeconfig** file, which will be used by NNI to interact with your Kubernetes API server. By default, NNI manager will use $(HOME)/.kube/config as kubeconfig file's path. You can also specify other kubeconfig files by setting the**KUBECONFIG** environment variable. Refer this `guideline <https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig>`__ to learn more about kubeconfig.
#. If your NNI trial job needs GPU resource, you should follow this `guideline <https://github.com/NVIDIA/k8s-device-plugin>`__ to configure **Nvidia device plugin for Kubernetes**.
#. Prepare a **NFS server** and export a general purpose mount (we recommend to map your NFS server path in ``root_squash option``\ , otherwise permission issue may raise when NNI copy files to NFS. Refer this `page <https://linux.die.net/man/5/exports>`__ to learn what root_squash option is), or**Azure File Storage**.
#. Install **NFS client** on the machine where you install NNI and run nnictl to create experiment. Run this command to install NFSv4 client:

.. code-block:: bash

    apt-get install nfs-common

#. Install **NNI**\ , follow the install guide `here <../Tutorial/QuickStart>`__.

Prerequisite for Azure Kubernetes Service
-----------------------------------------


#. NNI support Kubeflow based on Azure Kubernetes Service, follow the `guideline <https://azure.microsoft.com/en-us/services/kubernetes-service/>`__ to set up Azure Kubernetes Service.
#. Install `Azure CLI <https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest>`__ and **kubectl**.  Use ``az login`` to set azure account, and connect kubectl client to AKS, refer this `guideline <https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough#connect-to-the-cluster>`__.
#. Deploy Kubeflow on Azure Kubernetes Service, follow the `guideline <https://www.kubeflow.org/docs/started/getting-started/>`__.
#. Follow the `guideline <https://docs.microsoft.com/en-us/azure/storage/common/storage-quickstart-create-account?tabs=portal>`__ to create azure file storage account. If you use Azure Kubernetes Service, NNI need Azure Storage Service to store code files and the output files.
#. To access Azure storage service, NNI need the access key of the storage account, and NNI use `Azure Key Vault <https://azure.microsoft.com/en-us/services/key-vault/>`__ Service to protect your private key. Set up Azure Key Vault Service, add a secret to Key Vault to store the access key of Azure storage account. Follow this `guideline <https://docs.microsoft.com/en-us/azure/key-vault/quick-create-cli>`__ to store the access key.

Design
------


.. image:: ../../img/kubeflow_training_design.png
   :target: ../../img/kubeflow_training_design.png
   :alt: 

Kubeflow training service instantiates a Kubernetes rest client to interact with your K8s cluster's API server.

For each trial, we will upload all the files in your local codeDir path (configured in nni_config.yml) together with NNI generated files like parameter.cfg into a storage volumn. Right now we support two kinds of storage volumes: `nfs <https://en.wikipedia.org/wiki/Network_File_System>`__ and `azure file storage <https://azure.microsoft.com/en-us/services/storage/files/>`__\ , you should configure the storage volumn in NNI config YAML file. After files are prepared, Kubeflow training service will call K8S rest API to create Kubeflow jobs (\ `tf-operator <https://github.com/kubeflow/tf-operator>`__ job or `pytorch-operator <https://github.com/kubeflow/pytorch-operator>`__ job) in K8S, and mount your storage volume into the job's pod. Output files of Kubeflow job, like stdout, stderr, trial.log or model files, will also be copied back to the storage volumn. NNI will show the storage volumn's URL for each trial in WebUI, to allow user browse the log files and job's output files.

Supported operator
------------------

NNI only support tf-operator and pytorch-operator of Kubeflow, other operators is not tested.
Users could set operator type in config file.
The setting of tf-operator:

.. code-block:: yaml

   kubeflowConfig:
     operator: tf-operator

The setting of pytorch-operator:

.. code-block:: yaml

   kubeflowConfig:
     operator: pytorch-operator

If users want to use tf-operator, he could set ``ps`` and ``worker`` in trial config. If users want to use pytorch-operator, he could set ``master`` and ``worker`` in trial config.

Supported storage type
----------------------

NNI support NFS and Azure Storage to store the code and output files, users could set storage type in config file and set the corresponding config.

The setting for NFS storage are as follows:

.. code-block:: yaml

   kubeflowConfig:
     storage: nfs
     nfs:
       # Your NFS server IP, like 10.10.10.10
       server: {your_nfs_server_ip}
       # Your NFS server export path, like /var/nfs/nni
       path: {your_nfs_server_export_path}

If you use Azure storage, you should  set ``kubeflowConfig`` in your config YAML file as follows:

.. code-block:: yaml

   kubeflowConfig:
     storage: azureStorage
     keyVault:
       vaultName: {your_vault_name}
       name: {your_secert_name}
     azureStorage:
       accountName: {your_storage_account_name}
       azureShare: {your_azure_share_name}

Run an experiment
-----------------

Use ``examples/trials/mnist-tfv1`` as an example. This is a tensorflow job, and use tf-operator of Kubeflow. The NNI config YAML file's content is like:

.. code-block:: yaml

   authorName: default
   experimentName: example_mnist
   trialConcurrency: 2
   maxExecDuration: 1h
   maxTrialNum: 20
   #choice: local, remote, pai, kubeflow
   trainingServicePlatform: kubeflow
   searchSpacePath: search_space.json
   #choice: true, false
   useAnnotation: false
   tuner:
     #choice: TPE, Random, Anneal, Evolution
     builtinTunerName: TPE
     classArgs:
       #choice: maximize, minimize
       optimize_mode: maximize
   assessor:
     builtinAssessorName: Medianstop
     classArgs:
       optimize_mode: maximize
   trial:
     codeDir: .
     worker:
       replicas: 2
       command: python3 dist_mnist.py
       gpuNum: 1
       cpuNum: 1
       memoryMB: 8196
       image: msranni/nni:latest
     ps:
       replicas: 1
       command: python3 dist_mnist.py
       gpuNum: 0
       cpuNum: 1
       memoryMB: 8196
       image: msranni/nni:latest
   kubeflowConfig:
     operator: tf-operator
     apiVersion: v1alpha2
     storage: nfs
     nfs:
       # Your NFS server IP, like 10.10.10.10
       server: {your_nfs_server_ip}
       # Your NFS server export path, like /var/nfs/nni
       path: {your_nfs_server_export_path}

Note: You should explicitly set ``trainingServicePlatform: kubeflow`` in NNI config YAML file if you want to start experiment in kubeflow mode.

If you want to run PyTorch jobs, you could set your config files as follow:

.. code-block:: yaml

   authorName: default
   experimentName: example_mnist_distributed_pytorch
   trialConcurrency: 1
   maxExecDuration: 1h
   maxTrialNum: 10
   #choice: local, remote, pai, kubeflow
   trainingServicePlatform: kubeflow
   searchSpacePath: search_space.json
   #choice: true, false
   useAnnotation: false
   tuner:
     #choice: TPE, Random, Anneal, Evolution
     builtinTunerName: TPE
     classArgs:
       #choice: maximize, minimize
       optimize_mode: minimize
   trial:
     codeDir: .
     master:
       replicas: 1
       command: python3 dist_mnist.py
       gpuNum: 1
       cpuNum: 1
       memoryMB: 2048
       image: msranni/nni:latest
     worker:
       replicas: 1
       command: python3 dist_mnist.py
       gpuNum: 0
       cpuNum: 1
       memoryMB: 2048
       image: msranni/nni:latest
   kubeflowConfig:
     operator: pytorch-operator
     apiVersion: v1alpha2
     nfs:
       # Your NFS server IP, like 10.10.10.10
       server: {your_nfs_server_ip}
       # Your NFS server export path, like /var/nfs/nni
       path: {your_nfs_server_export_path}

Trial configuration in kubeflow mode have the following configuration keys:


* codeDir

  * code directory, where you put training code and config files

* worker (required). This config section is used to configure tensorflow worker role

  * replicas

    * Required key. Should be positive number depends on how many replication your want to run for tensorflow worker role.

  * command

    * Required key. Command to launch your trial job, like ``python mnist.py``

  * memoryMB

    * Required key. Should be positive number based on your trial program's memory requirement

  * cpuNum
  * gpuNum
  * image

    * Required key. In kubeflow mode, your trial program will be scheduled by Kubernetes to run in `Pod <https://kubernetes.io/docs/concepts/workloads/pods/pod/>`__. This key is used to specify the Docker image used to create the pod where your trail program will run.
    * We already build a docker image :githublink:`msranni/nni <deployment/docker/Dockerfile>`. You can either use this image directly in your config file, or build your own image based on it.

  * privateRegistryAuthPath

    * Optional field, specify ``config.json`` file path that holds an authorization token of docker registry, used to pull image from private registry. `Refer <https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/>`__.

  * apiVersion

    * Required key. The API version of your Kubeflow.

* ps (optional). This config section is used to configure Tensorflow parameter server role.
* master(optional). This config section is used to configure PyTorch parameter server role.

Once complete to fill NNI experiment config file and save (for example, save as exp_kubeflow.yml), then run the following command

.. code-block:: bash

   nnictl create --config exp_kubeflow.yml

to start the experiment in kubeflow mode. NNI will create Kubeflow tfjob or pytorchjob for each trial, and the job name format is something like ``nni_exp_{experiment_id}_trial_{trial_id}``.
You can see the Kubeflow tfjob created by NNI in your Kubernetes dashboard.

Notice: In kubeflow mode, NNIManager will start a rest server and listen on a port which is your NNI WebUI's port plus 1. For example, if your WebUI port is ``8080``\ , the rest server will listen on ``8081``\ , to receive metrics from trial job running in Kubernetes. So you should ``enable 8081`` TCP port in your firewall rule to allow incoming traffic.

Once a trial job is completed, you can go to NNI WebUI's overview page (like http://localhost:8080/oview) to check trial's information.

version check
-------------

NNI support version check feature in since version 0.6, `refer <PaiMode.rst>`__

Any problems when using NNI in Kubeflow mode, please create issues on `NNI Github repo <https://github.com/Microsoft/nni>`__.