"vscode:/vscode.git/clone" did not exist on "9dda03d6be6c94cc803b6189302a8a148c5e4d12"
test_oneshot_utils.py 4.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import math
from typing import Union

import pytest
import torch
import pytorch_lightning
from pytorch_lightning import LightningModule, Trainer
from torch.utils.data import DataLoader, Dataset

pytestmark = pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs')


class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len


class BoringModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(32, 2)

    def forward(self, x):
        return self.layer(x)

    def training_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log('train_loss', loss)
        return {'loss': loss}

    def validation_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log('valid_loss', loss)

    def test_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log('test_loss', loss)

    def configure_optimizers(self):
        return torch.optim.SGD(self.layer.parameters(), lr=0.1)



def test_concat_loader():
    from nni.retiarii.oneshot.pytorch.dataloader import ConcatLoader

    loaders = {
        'a': DataLoader(range(10), batch_size=4),
        'b': DataLoader(range(20), batch_size=5),
    }
    dataloader = ConcatLoader(loaders)
    assert len(dataloader) == 7
    for i, (data, label) in enumerate(dataloader):
        if i < 3:
            assert len(data) <= 4
            assert label == 'a'
        else:
            assert len(data) <= 5
            assert label == 'b'


def test_concat_loader_nested():
    from nni.retiarii.oneshot.pytorch.dataloader import ConcatLoader

    loaders = {
        'a': [DataLoader(range(10), batch_size=4), DataLoader(range(20), batch_size=6)],
        'b': DataLoader(range(20), batch_size=5),
    }
    dataloader = ConcatLoader(loaders)
    assert len(dataloader) == 7
    for i, (data, label) in enumerate(dataloader):
        if i < 3:
            assert isinstance(data, list) and len(data) == 2
            assert label == 'a'
        else:
            assert label == 'b'


@pytest.mark.parametrize('replace_sampler_ddp', [False, True])
@pytest.mark.parametrize('is_min_size_mode', [True])
@pytest.mark.parametrize('num_devices', ['auto', 1, 3, 10])
def test_concat_loader_with_ddp(
    replace_sampler_ddp: bool, is_min_size_mode: bool, num_devices: Union[int, str]
):
    """Inspired by tests/trainer/test_supporters.py in lightning."""
    from nni.retiarii.oneshot.pytorch.dataloader import ConcatLoader

    mode = 'min_size' if is_min_size_mode else 'max_size_cycle'
    dim = 3
    n1 = 8
    n2 = 6
    n3 = 9
    dataloader = ConcatLoader({
        'a': {
            'a1': DataLoader(RandomDataset(dim, n1), batch_size=1),
            'a2': DataLoader(RandomDataset(dim, n2), batch_size=1),
        },
        'b': DataLoader(RandomDataset(dim, n3), batch_size=1),
    }, mode=mode)
    expected_length_before_ddp = n3 + (min(n1, n2) if is_min_size_mode else max(n1, n2))
    print(len(dataloader))
    assert len(dataloader) == expected_length_before_ddp
    model = BoringModel()
    trainer = Trainer(
        strategy='ddp',
        accelerator='auto',
        devices=num_devices,
        replace_sampler_ddp=replace_sampler_ddp,
    )
    trainer._data_connector.attach_data(
        model=model, train_dataloaders=dataloader, val_dataloaders=None, datamodule=None
    )
    expected_length_after_ddp = (
        math.ceil(n3 / trainer.num_devices) + \
            math.ceil((min(n1, n2) if is_min_size_mode else max(n1, n2)) / trainer.num_devices)
        if replace_sampler_ddp
        else expected_length_before_ddp
    )
    print('Num devices =', trainer.num_devices)
    trainer.reset_train_dataloader(model=model)
    assert trainer.train_dataloader is not None
    assert trainer.train_dataloader.mode == mode
    
    assert trainer.num_training_batches == expected_length_after_ddp