test_oneshot.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
import pytest
from torchvision import transforms
from torchvision.datasets import MNIST
8
from torch.utils.data import Dataset, RandomSampler
9

10
11
import nni.retiarii.nn.pytorch as nn
from nni.retiarii import strategy, model_wrapper, basic_unit
12
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
13
14
from nni.retiarii.evaluator.pytorch.lightning import Classification, Regression, DataLoader
from nni.retiarii.nn.pytorch import LayerChoice, InputChoice, ValueChoice
Yuge Zhang's avatar
Yuge Zhang committed
15
from nni.retiarii.strategy import BaseStrategy
16
17


18
19
20
pytestmark = pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')


21
22
23
24
25
26
27
28
29
30
class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


31
@model_wrapper
32
33
class SimpleNet(nn.Module):
    def __init__(self, value_choice=True):
34
35
36
37
38
39
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
40
41
42
43
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
44
        ])
45
46
47
48
49
50
51
        self.dropout2 = nn.Dropout(0.5)
        if value_choice:
            hidden = nn.ValueChoice([32, 64, 128])
        else:
            hidden = 64
        self.fc1 = nn.Linear(9216, hidden)
        self.fc2 = nn.Linear(hidden, 10)
52
        self.rpfc = nn.Linear(10, 10)
53
        self.input_ch = InputChoice(2, 1)
54
55
56
57

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(self.conv2(x), 2)
58
59
60
61
62
63
64
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        x1 = self.rpfc(x)
        x = self.input_ch([x, x1])
65
66
67
68
        output = F.log_softmax(x, dim=1)
        return output


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
@model_wrapper
class MultiHeadAttentionNet(nn.Module):
    def __init__(self, head_count):
        super().__init__()
        embed_dim = ValueChoice(candidates=[32, 64])
        self.linear1 = nn.Linear(128, embed_dim)
        self.mhatt = nn.MultiheadAttention(embed_dim, head_count)
        self.linear2 = nn.Linear(embed_dim, 1)

    def forward(self, batch):
        query, key, value = batch
        q, k, v = self.linear1(query), self.linear1(key), self.linear1(value)
        output, _ = self.mhatt(q, k, v, need_weights=False)
        y = self.linear2(output)
        return F.relu(y)


@model_wrapper
class ValueChoiceConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


@model_wrapper
class RepeatNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)
        self.rpfc = nn.Repeat(nn.Linear(10, 10), (1, 4))

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        x = self.rpfc(x)
        return F.log_softmax(x, dim=1)


@basic_unit
class MyOp(nn.Module):
    def __init__(self, some_ch):
        super().__init__()
        self.some_ch = some_ch
        self.batch_norm = nn.BatchNorm2d(some_ch)

    def forward(self, x):
        return self.batch_norm(x)


@model_wrapper
class CustomOpValueChoiceNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = MyOp(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


177
def _mnist_net(type_, evaluator_kwargs):
178
179
180
181
182
183
184
185
186
187
188
189
190
    if type_ == 'simple':
        base_model = SimpleNet(False)
    elif type_ == 'simple_value_choice':
        base_model = SimpleNet()
    elif type_ == 'value_choice':
        base_model = ValueChoiceConvNet()
    elif type_ == 'repeat':
        base_model = RepeatNet()
    elif type_ == 'custom_op':
        base_model = CustomOpValueChoiceNet()
    else:
        raise ValueError(f'Unsupported type: {type_}')
    
191
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
192
    train_dataset = MNIST('data/mnist', train=True, download=True, transform=transform)
193
    # Multi-GPU combined dataloader will break this subset sampler. Expected though.
194
195
196
197
198
    train_random_sampler = RandomSampler(train_dataset, True, int(len(train_dataset) / 20))
    train_loader = DataLoader(train_dataset, 64, sampler=train_random_sampler)
    valid_dataset = MNIST('data/mnist', train=False, download=True, transform=transform)
    valid_random_sampler = RandomSampler(valid_dataset, True, int(len(valid_dataset) / 20))
    valid_loader = DataLoader(valid_dataset, 64, sampler=valid_random_sampler)
199
    evaluator = Classification(train_dataloader=train_loader, val_dataloaders=valid_loader, **evaluator_kwargs)
200
201
202
203

    return base_model, evaluator


204
def _multihead_attention_net(evaluator_kwargs):
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    base_model = MultiHeadAttentionNet(1)

    class AttentionRandDataset(Dataset):
        def __init__(self, data_shape, gt_shape, len) -> None:
            super().__init__()
            self.datashape = data_shape
            self.gtshape = gt_shape
            self.len = len

        def __getitem__(self, index):
            q = torch.rand(self.datashape)
            k = torch.rand(self.datashape)
            v = torch.rand(self.datashape)
            gt = torch.rand(self.gtshape)
            return (q, k, v), gt

        def __len__(self):
            return self.len
223

224
225
226
227
    train_set = AttentionRandDataset((1, 128), (1, 1), 1000)
    val_set = AttentionRandDataset((1, 128), (1, 1), 500)
    train_loader = DataLoader(train_set, batch_size=32)
    val_loader = DataLoader(val_set, batch_size=32)
228

229
    evaluator = Regression(train_dataloader=train_loader, val_dataloaders=val_loader, **evaluator_kwargs)
230
    return base_model, evaluator
231
232


233
234
235
236
237
238
239
240
241
242
243
def _test_strategy(strategy_, support_value_choice=True, multi_gpu=False):
    evaluator_kwargs = {
        'max_epochs': 1
    }
    if multi_gpu:
        evaluator_kwargs.update(
            strategy='ddp',
            accelerator='gpu',
            devices=torch.cuda.device_count()
        )

244
245
    to_test = [
        # (model, evaluator), support_or_net
246
247
248
249
250
251
        (_mnist_net('simple', evaluator_kwargs), True),
        (_mnist_net('simple_value_choice', evaluator_kwargs), support_value_choice),
        (_mnist_net('value_choice', evaluator_kwargs), support_value_choice),
        (_mnist_net('repeat', evaluator_kwargs), False),      # no strategy supports repeat currently
        (_mnist_net('custom_op', evaluator_kwargs), False),   # this is definitely a NO
        (_multihead_attention_net(evaluator_kwargs), support_value_choice),
252
    ]
253

254
    for (base_model, evaluator), support_or_not in to_test:
Yuge Zhang's avatar
Yuge Zhang committed
255
256
257
258
259
260
        if isinstance(strategy_, BaseStrategy):
            strategy = strategy_
        else:
            strategy = strategy_(base_model, evaluator)
        print('Testing:', type(strategy).__name__, type(base_model).__name__, type(evaluator).__name__, support_or_not)
        experiment = RetiariiExperiment(base_model, evaluator, strategy=strategy)
261

262
263
        config = RetiariiExeConfig()
        config.execution_engine = 'oneshot'
264

265
266
267
268
269
270
        if support_or_not:
            experiment.run(config)
            assert isinstance(experiment.export_top_models()[0], dict)
        else:
            with pytest.raises(TypeError, match='not supported'):
                experiment.run(config)
271
272


273
def test_darts():
274
    _test_strategy(strategy.DARTS())
275
276


277
278
279
280
281
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_darts_multi_gpu():
    _test_strategy(strategy.DARTS(), multi_gpu=True)


282
def test_proxyless():
283
    _test_strategy(strategy.Proxyless(), False)
284
285
286


def test_enas():
Yuge Zhang's avatar
Yuge Zhang committed
287
288
289
290
291
292
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn)
293
294


295
296
297
298
299
300
301
302
303
304
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_enas_multi_gpu():
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn, multi_gpu=True)


305
def test_random():
306
    _test_strategy(strategy.RandomOneShot())
307
308


309
310
def test_gumbel_darts():
    _test_strategy(strategy.GumbelDARTS())
311
312
313
314
315


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--exp', type=str, default='all', metavar='E',
316
                        help='experiment to run, default = all')
317
318
319
320
321
322
323
    args = parser.parse_args()

    if args.exp == 'all':
        test_darts()
        test_proxyless()
        test_enas()
        test_random()
324
        test_gumbel_darts()
325
326
    else:
        globals()[f'test_{args.exp}']()