network.py 6.38 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import click
import nni
import nni.retiarii.evaluator.pytorch.lightning as pl
import torch.nn as nn
import torchmetrics
from nni.retiarii import model_wrapper, serialize, serialize_cls
from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig
from nni.retiarii.nn.pytorch import NasBench101Cell
from nni.retiarii.strategy import Random
from pytorch_lightning.callbacks import LearningRateMonitor
from timm.optim import RMSpropTF
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchvision import transforms
from torchvision.datasets import CIFAR10

from base_ops import Conv3x3BnRelu, Conv1x1BnRelu, Projection


@model_wrapper
class NasBench101(nn.Module):
    def __init__(self,
                 stem_out_channels: int = 128,
                 num_stacks: int = 3,
                 num_modules_per_stack: int = 3,
                 max_num_vertices: int = 7,
                 max_num_edges: int = 9,
                 num_labels: int = 10,
                 bn_eps: float = 1e-5,
                 bn_momentum: float = 0.003):
        super().__init__()

        op_candidates = {
            'conv3x3': lambda num_features: Conv3x3BnRelu(num_features, num_features),
            'conv1x1': lambda num_features: Conv1x1BnRelu(num_features, num_features),
            'maxpool': lambda num_features: nn.MaxPool2d(3, 1, 1)
        }

        # initial stem convolution
        self.stem_conv = Conv3x3BnRelu(3, stem_out_channels)

        layers = []
        in_channels = out_channels = stem_out_channels
        for stack_num in range(num_stacks):
            if stack_num > 0:
                downsample = nn.MaxPool2d(kernel_size=2, stride=2)
                layers.append(downsample)
                out_channels *= 2
            for _ in range(num_modules_per_stack):
                cell = NasBench101Cell(op_candidates, in_channels, out_channels,
                                       lambda cin, cout: Projection(cin, cout),
                                       max_num_vertices, max_num_edges, label='cell')
                layers.append(cell)
                in_channels = out_channels

        self.features = nn.ModuleList(layers)
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Linear(out_channels, num_labels)

        for module in self.modules():
            if isinstance(module, nn.BatchNorm2d):
                module.eps = bn_eps
                module.momentum = bn_momentum

    def forward(self, x):
        bs = x.size(0)
        out = self.stem_conv(x)
        for layer in self.features:
            out = layer(out)
        out = self.gap(out).view(bs, -1)
        out = self.classifier(out)
        return out

    def reset_parameters(self):
        for module in self.modules():
            if isinstance(module, nn.BatchNorm2d):
                module.eps = self.config.bn_eps
                module.momentum = self.config.bn_momentum


class AccuracyWithLogits(torchmetrics.Accuracy):
    def update(self, pred, target):
        return super().update(nn.functional.softmax(pred), target)


@serialize_cls
class NasBench101TrainingModule(pl.LightningModule):
    def __init__(self, max_epochs=108, learning_rate=0.1, weight_decay=1e-4):
        super().__init__()
        self.save_hyperparameters('learning_rate', 'weight_decay', 'max_epochs')
        self.criterion = nn.CrossEntropyLoss()
        self.accuracy = AccuracyWithLogits()

    def forward(self, x):
        y_hat = self.model(x)
        return y_hat

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = self.criterion(y_hat, y)
        self.log('train_loss', loss, prog_bar=True)
        self.log('train_accuracy', self.accuracy(y_hat, y), prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        self.log('val_loss', self.criterion(y_hat, y), prog_bar=True)
        self.log('val_accuracy', self.accuracy(y_hat, y), prog_bar=True)

    def configure_optimizers(self):
        optimizer = RMSpropTF(self.parameters(), lr=self.hparams.learning_rate,
                              weight_decay=self.hparams.weight_decay,
                              momentum=0.9, alpha=0.9, eps=1.0)
        return {
            'optimizer': optimizer,
            'scheduler': CosineAnnealingLR(optimizer, self.hparams.max_epochs)
        }

    def on_validation_epoch_end(self):
        nni.report_intermediate_result(self.trainer.callback_metrics['val_accuracy'].item())

    def teardown(self, stage):
        if stage == 'fit':
            nni.report_final_result(self.trainer.callback_metrics['val_accuracy'].item())


@click.command()
@click.option('--epochs', default=108, help='Training length.')
@click.option('--batch_size', default=256, help='Batch size.')
@click.option('--port', default=8081, help='On which port the experiment is run.')
def _multi_trial_test(epochs, batch_size, port):
    # initalize dataset. Note that 50k+10k is used. It's a little different from paper
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768])
    ]
    train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize))
    test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize))

    # specify training hyper-parameters
    training_module = NasBench101TrainingModule(max_epochs=epochs)
    # FIXME: need to fix a bug in serializer for this to work
    # lr_monitor = serialize(LearningRateMonitor, logging_interval='step')
    trainer = pl.Trainer(max_epochs=epochs, gpus=1)
    lightning = pl.Lightning(
        lightning_module=training_module,
        trainer=trainer,
        train_dataloader=pl.DataLoader(train_dataset, batch_size=batch_size, shuffle=True),
        val_dataloaders=pl.DataLoader(test_dataset, batch_size=batch_size),
    )

    strategy = Random()

    model = NasBench101()

    exp = RetiariiExperiment(model, lightning, [], strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 20
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = False

    exp.run(exp_config, port)


if __name__ == '__main__':
    _multi_trial_test()