search.py 2.77 KB
Newer Older
1
2
import random

QuanluZhang's avatar
QuanluZhang committed
3
import torch
4
import nni.retiarii.nn.pytorch as nn
5
import nni.retiarii.strategy as strategy
6
import nni.retiarii.evaluator.pytorch.lightning as pl
7
import torch.nn.functional as F
8
from nni.retiarii import serialize, model_wrapper
9
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment, debug_mutated_model
10
11
12
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
13

QuanluZhang's avatar
QuanluZhang committed
14
15
16
17
18
19
20
21
22
class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))

23
@model_wrapper
24
class Net(nn.Module):
QuanluZhang's avatar
QuanluZhang committed
25
    def __init__(self):
26
        super().__init__()
QuanluZhang's avatar
QuanluZhang committed
27
28
29
30
31
32
33
34
35
36
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
        self.dropout1 = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75]))
        self.dropout2 = nn.Dropout(0.5)
        feature = nn.ValueChoice([64, 128, 256])
        self.fc1 = nn.Linear(9216, feature)
        self.fc2 = nn.Linear(feature, 10)
37
38
39

    def forward(self, x):
        x = F.relu(self.conv1(x))
QuanluZhang's avatar
QuanluZhang committed
40
41
42
43
44
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc2(self.dropout2(F.relu(self.fc1(x))))
        output = F.log_softmax(x, dim=1)
        return output
45
46

if __name__ == '__main__':
QuanluZhang's avatar
QuanluZhang committed
47
    base_model = Net()
48
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
49
50
    train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)
51
52
53
    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=2)
54

55
    simple_strategy = strategy.Random()
56

57
    exp = RetiariiExperiment(base_model, trainer, [], simple_strategy)
58
59
60
61

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnist_search'
    exp_config.trial_concurrency = 2
QuanluZhang's avatar
QuanluZhang committed
62
    exp_config.max_trial_number = 20
63
    exp_config.training_service.use_active_gpu = False
64
    export_formatter = 'dict'
65

66
67
68
    # uncomment this for graph-based execution engine
    # exp_config.execution_engine = 'base'
    # export_formatter = 'code'
69
70

    exp.run(exp_config, 8081 + random.randint(0, 100))
71
    print('Final model:')
72
    for model_code in exp.export_top_models(formatter=export_formatter):
QuanluZhang's avatar
QuanluZhang committed
73
        print(model_code)