train.py 4.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import (AveragePooling2D, BatchNormalization, Conv2D, Dense, MaxPool2D)
from tensorflow.keras.losses import Reduction, SparseCategoricalCrossentropy
from tensorflow.keras.optimizers import SGD

import nni
from nni.nas.tensorflow.mutables import LayerChoice, InputChoice
from nni.nas.tensorflow.classic_nas import get_and_apply_next_architecture

tf.get_logger().setLevel('ERROR')

class Net(Model):
    def __init__(self):
        super().__init__()
        self.conv1 = LayerChoice([
            Conv2D(6, 3, padding='same', activation='relu'),
            Conv2D(6, 5, padding='same', activation='relu'),
        ])
        self.pool = MaxPool2D(2)
        self.conv2 = LayerChoice([
            Conv2D(16, 3, padding='same', activation='relu'),
            Conv2D(16, 5, padding='same', activation='relu'),
        ])
        self.conv3 = Conv2D(16, 1)

        self.skipconnect = InputChoice(n_candidates=2, n_chosen=1)
        self.bn = BatchNormalization()

        self.gap = AveragePooling2D(2)
        self.fc1 = Dense(120, activation='relu')
        self.fc2 = Dense(84, activation='relu')
        self.fc3 = Dense(10)

    def call(self, x):
        bs = x.shape[0]

        t = self.conv1(x)
        x = self.pool(t)
        x0 = self.conv2(x)
        x1 = self.conv3(x0)

        x0 = self.skipconnect([x0, None])
        if x0 is not None:
            x1 += x0
        x = self.pool(self.bn(x1))

        x = self.gap(x)
        x = tf.reshape(x, [bs, -1])
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

def loss(model, x, y, training):
    # training=training is needed only if there are layers with different
    # behavior during training versus inference (e.g. Dropout).
    y_ = model(x, training=training)

    return loss_object(y_true=y, y_pred=y_)

def grad(model, inputs, targets):
    with tf.GradientTape() as tape:
        loss_value = loss(model, inputs, targets, training=True)
    return loss_value, tape.gradient(loss_value, model.trainable_variables)

def train(net, train_dataset, optimizer, num_epochs):
    train_loss_results = []
    train_accuracy_results = []

    for epoch in range(num_epochs):
        epoch_loss_avg = tf.keras.metrics.Mean()
        epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

        for x, y in train_dataset:
            loss_value, grads = grad(net, x, y)
            optimizer.apply_gradients(zip(grads, net.trainable_variables))
            epoch_loss_avg.update_state(loss_value)
            epoch_accuracy.update_state(y, net(x, training=True))

        train_loss_results.append(epoch_loss_avg.result())
        train_accuracy_results.append(epoch_accuracy.result())

        if epoch % 1 == 0:
            print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch,
                                                                epoch_loss_avg.result(),
                                                                epoch_accuracy.result()))

def test(model, test_dataset):
    test_accuracy = tf.keras.metrics.Accuracy()

    for (x, y) in test_dataset:
        # training=False is needed only if there are layers with different
        # behavior during training versus inference (e.g. Dropout).
        logits = model(x, training=False)
        prediction = tf.argmax(logits, axis=1, output_type=tf.int32)
        test_accuracy(prediction, y)

    print("Test set accuracy: {:.3%}".format(test_accuracy.result()))
    return test_accuracy.result()

if __name__ == '__main__':
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    args, _ = parser.parse_known_args()

    cifar10 = tf.keras.datasets.cifar10
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    split = int(len(x_train) * 0.9)
    dataset_train = tf.data.Dataset.from_tensor_slices((x_train[:split], y_train[:split])).batch(64)
    dataset_valid = tf.data.Dataset.from_tensor_slices((x_train[split:], y_train[split:])).batch(64)
    dataset_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(64)

    net = Net()
    
    get_and_apply_next_architecture(net)

    optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

    train(net, dataset_train, optimizer, args.epochs)

    acc = test(net, dataset_test)

    nni.report_final_result(acc.numpy())