test.py 3.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import os
import sys
import torch
from pathlib import Path

import nni.retiarii.evaluator.pytorch.lightning as pl
import nni.retiarii.evaluator.pytorch.cgo.evaluator as cgo
from nni.retiarii import serialize
from base_mnasnet import MNASNet
from nni.experiment import RemoteMachineConfig
11
from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig, CgoEngineConfig
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from nni.retiarii.strategy import TPEStrategy
from torchvision import transforms
from torchvision.datasets import CIFAR10

from mutator import BlockMutator

if __name__ == '__main__':
    _DEFAULT_DEPTHS = [16, 24, 40, 80, 96, 192, 320]
    _DEFAULT_CONVOPS = ["dconv", "mconv", "mconv", "mconv", "mconv", "mconv", "mconv"]
    _DEFAULT_SKIPS = [False, True, True, True, True, True, True]
    _DEFAULT_KERNEL_SIZES = [3, 3, 5, 5, 3, 5, 3]
    _DEFAULT_NUM_LAYERS = [1, 3, 3, 3, 2, 4, 1]

    base_model = MNASNet(0.5, _DEFAULT_DEPTHS, _DEFAULT_CONVOPS, _DEFAULT_KERNEL_SIZES,
                         _DEFAULT_NUM_LAYERS, _DEFAULT_SKIPS)

    train_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    valid_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    train_dataset = serialize(CIFAR10, root='data/cifar10', train=True, download=True, transform=train_transform)
    test_dataset = serialize(CIFAR10, root='data/cifar10', train=False, download=True, transform=valid_transform)
    # trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
    #                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
    #                             max_epochs=1, limit_train_batches=0.2)
    trainer = cgo.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=1, limit_train_batches=0.2)

    applied_mutators = [
        BlockMutator('mutable_0'),
        BlockMutator('mutable_1')
    ]

    simple_strategy = TPEStrategy()

    exp = RetiariiExperiment(base_model, trainer, applied_mutators, simple_strategy)

    exp_config = RetiariiExeConfig('remote')
    exp_config.experiment_name = 'darts_search'
    exp_config.trial_concurrency = 3
    exp_config.max_trial_number = 10
    exp_config.trial_gpu_number = 1
    exp_config.training_service.reuse_mode = True

    rm_conf = RemoteMachineConfig()
    rm_conf.host = '127.0.0.1'
    rm_conf.user = 'xxx'
    rm_conf.password = 'xxx'
    rm_conf.port = 22
    rm_conf.python_path = '/home/xxx/py38/bin'
    rm_conf.gpu_indices = [0, 1, 2]
    rm_conf.use_active_gpu = True
    rm_conf.max_trial_number_per_gpu = 3
    
    exp_config.training_service.machine_list = [rm_conf]
74
    exp_config.execution_engine = CgoEngineConfig(max_concurrency_cgo = 3, batch_waiting_time = 0)
75

76
    exp.run(exp_config, 8099)