mnist_generated.py 7.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import nni
"""A deep MNIST classifier using convolutional layers."""
import logging
import math
import tempfile
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
FLAGS = None
logger = logging.getLogger('mnist_AutoML')


class MnistNetwork(object):
    """
    MnistNetwork is for initlizing and building basic network for mnist.
    """

    def __init__(self, channel_1_num, channel_2_num, conv_size, hidden_size,
        pool_size, learning_rate, x_dim=784, y_dim=10):
        self.channel_1_num = channel_1_num
        self.channel_2_num = channel_2_num
        self.conv_size = nni.choice(2, 3, 5, 7, name='self.conv_size')
        self.hidden_size = nni.choice(124, 512, 1024, name='self.hidden_size')
        self.pool_size = pool_size
        self.learning_rate = nni.uniform(0.0001, 0.1, name='self.learning_rate'
            )
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.images = tf.placeholder(tf.float32, [None, self.x_dim], name=
            'input_x')
        self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name=
            'input_y')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        self.train_step = None
        self.accuracy = None

    def build_network(self):
        """
        Building network for mnist
        """
        with tf.name_scope('reshape'):
            try:
                input_dim = int(math.sqrt(self.x_dim))
            except:
                print('input dim cannot be sqrt and reshape. input dim: ' +
                    str(self.x_dim))
                logger.debug(
                    'input dim cannot be sqrt and reshape. input dim: %s',
                    str(self.x_dim))
                raise
            x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])
        with tf.name_scope('conv1'):
            w_conv1 = weight_variable([self.conv_size, self.conv_size, 1,
                self.channel_1_num])
            b_conv1 = bias_variable([self.channel_1_num])
            h_conv1 = nni.function_choice(lambda : tf.nn.relu(conv2d(
                x_image, w_conv1) + b_conv1), lambda : tf.nn.sigmoid(conv2d
                (x_image, w_conv1) + b_conv1), lambda : tf.nn.tanh(conv2d(
                x_image, w_conv1) + b_conv1), name='tf.nn.relu')
        with tf.name_scope('pool1'):
            h_pool1 = nni.function_choice(lambda : max_pool(h_conv1, self.
                pool_size), lambda : avg_pool(h_conv1, self.pool_size),
                name='max_pool')
        with tf.name_scope('conv2'):
            w_conv2 = weight_variable([self.conv_size, self.conv_size, self
                .channel_1_num, self.channel_2_num])
            b_conv2 = bias_variable([self.channel_2_num])
            h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
        with tf.name_scope('pool2'):
            h_pool2 = max_pool(h_conv2, self.pool_size)
        last_dim = int(input_dim / (self.pool_size * self.pool_size))
        with tf.name_scope('fc1'):
            w_fc1 = weight_variable([last_dim * last_dim * self.
                channel_2_num, self.hidden_size])
            b_fc1 = bias_variable([self.hidden_size])
        h_pool2_flat = tf.reshape(h_pool2, [-1, last_dim * last_dim * self.
            channel_2_num])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
        with tf.name_scope('dropout'):
            h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
        with tf.name_scope('fc2'):
            w_fc2 = weight_variable([self.hidden_size, self.y_dim])
            b_fc2 = bias_variable([self.y_dim])
            y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
        with tf.name_scope('loss'):
            cross_entropy = tf.reduce_mean(tf.nn.
                softmax_cross_entropy_with_logits(labels=self.labels,
                logits=y_conv))
        with tf.name_scope('adam_optimizer'):
            self.train_step = tf.train.AdamOptimizer(self.learning_rate
                ).minimize(cross_entropy)
        with tf.name_scope('accuracy'):
            correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(
                self.labels, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.
                float32))


def conv2d(x_input, w_matrix):
    """conv2d returns a 2d convolution layer with full stride."""
    return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME'
        )


def max_pool(x_input, pool_size):
    """max_pool downsamples a feature map by 2X."""
    return tf.nn.max_pool(x_input, ksize=[1, pool_size, pool_size, 1],
        strides=[1, pool_size, pool_size, 1], padding='SAME')


def avg_pool(x_input, pool_size):
    return tf.nn.avg_pool(x_input, ksize=[1, pool_size, pool_size, 1],
        strides=[1, pool_size, pool_size, 1], padding='SAME')


def weight_variable(shape):
    """weight_variable generates a weight variable of a given shape."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    """bias_variable generates a bias variable of a given shape."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def main(params):
    """
    Main function, build mnist network, run and send result to NNI.
    """
    mnist = input_data.read_data_sets(params['data_dir'], one_hot=True)
132
133
    print('Mnist download data done.')
    logger.debug('Mnist download data done.')
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
        channel_2_num=params['channel_2_num'], conv_size=params['conv_size'
        ], hidden_size=params['hidden_size'], pool_size=params['pool_size'],
        learning_rate=params['learning_rate'])
    mnist_network.build_network()
    logger.debug('Mnist build network done.')
    graph_location = tempfile.mkdtemp()
    logger.debug('Saving graph to: %s', graph_location)
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())
    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        batch_num = nni.choice(50, 250, 500, name='batch_num')
        for i in range(batch_num):
            batch = mnist.train.next_batch(batch_num)
            dropout_rate = nni.choice(1, 5, name='dropout_rate')
            mnist_network.train_step.run(feed_dict={mnist_network.images:
                batch[0], mnist_network.labels: batch[1], mnist_network.
                keep_prob: dropout_rate})
            if i % 100 == 0:
                test_acc = mnist_network.accuracy.eval(feed_dict={
                    mnist_network.images: mnist.test.images, mnist_network.
                    labels: mnist.test.labels, mnist_network.keep_prob: 1.0})
                nni.report_intermediate_result(test_acc)
                logger.debug('test accuracy %g', test_acc)
                logger.debug('Pipe send intermediate result done.')
        test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.
            images: mnist.test.images, mnist_network.labels: mnist.test.
            labels, mnist_network.keep_prob: 1.0})
        nni.report_final_result(test_acc)
        logger.debug('Final result is %g', test_acc)
        logger.debug('Send final result done.')


def generate_defualt_params():
    """
    Generate default parameters for mnist network.
    """
    params = {'data_dir': '/tmp/tensorflow/mnist/input_data',
        'dropout_rate': 0.5, 'channel_1_num': 32, 'channel_2_num': 64,
        'conv_size': 5, 'pool_size': 2, 'hidden_size': 1024,
        'learning_rate': 0.0001, 'batch_num': 200}
    return params


if __name__ == '__main__':
    try:
        main(generate_defualt_params())
    except Exception as exception:
        logger.exception(exception)
        raise