launcher_utils.py 10.9 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import os

def check_empty(experiment_config, key):
    '''Check whether a key is in experiment_config and has non-empty value'''
    if key not in experiment_config or experiment_config[key] is None:
        raise ValueError('%s can not be empty' % key)


def check_digit(experiment_config, key, start, end):
    '''Check whether a value in experiment_config is digit and in a range of [start, end]'''
    if not str(experiment_config[key]).isdigit() or experiment_config[key] < start or \
            experiment_config[key] > end:
        raise ValueError('%s must be a digit from %s to %s' % (key, start, end))


def check_directory(experiment_config, key):
    '''Check whether a value in experiment_config is a valid directory'''
    if not os.path.isdir(experiment_config[key]):
        raise NotADirectoryError('%s is not a valid directory' % key)


def check_file(experiment_config, key):
    '''Check whether a value in experiment_config is a valid file'''
    if not os.path.exists(experiment_config[key]):
        raise FileNotFoundError('%s is not a valid file path' % key)


def check_choice(experiment_config, key, choice_list):
    '''Check whether a value in experiment_config is in a choice list'''
    if not experiment_config[key] in choice_list:
        raise ValueError('%s must in [%s]' % (key, ','.join(choice_list)))

def parse_time(experiment_config, key):
    '''Parse time format'''
    unit = experiment_config[key][-1]
    if unit not in ['s', 'm', 'h', 'd']:
        raise ValueError('the unit of time could only from {s, m, h, d}')
    time = experiment_config[key][:-1]
    if not time.isdigit():
        raise ValueError('time format error!')
    parse_dict = {'s':1, 'm':60, 'h':3600, 'd':86400}
    experiment_config[key] = int(time) * parse_dict[unit]

def validate_common_content(experiment_config):
    '''Validate whether the common values in experiment_config is valid'''
    #validate authorName
    check_empty(experiment_config, 'authorName')

    #validate experimentName
    check_empty(experiment_config, 'experimentName')

    #validate trialNoncurrency
    check_empty(experiment_config, 'trialConcurrency')
    check_digit(experiment_config, 'trialConcurrency', 1, 1000)

    #validate execDuration
    check_empty(experiment_config, 'maxExecDuration')
    parse_time(experiment_config, 'maxExecDuration')

    #validate maxTrialNum
    check_empty(experiment_config, 'maxTrialNum')
    check_digit(experiment_config, 'maxTrialNum', 1, 1000)

    #validate trainingService
    check_empty(experiment_config, 'trainingServicePlatform')
    check_choice(experiment_config, 'trainingServicePlatform', ['local', 'remote'])


def validate_tuner_content(experiment_config):
    '''Validate whether tuner in experiment_config is valid'''
    tuner_algorithm_dict = {'TPE': 'nni.hyperopt_tuner --algorithm_name tpe',\
                            'Random': 'nni.hyperopt_tuner --algorithm_name random_search',\
                            'Anneal': 'nni.hyperopt_tuner --algorithm_name anneal',\
                            'Evolution': 'nni.evolution_tuner'}


    check_empty(experiment_config, 'tuner')
    #TODO: use elegent way to detect keys
    if experiment_config['tuner'].get('tunerCommand') and experiment_config['tuner'].get('tunerCwd')\
            and (experiment_config['tuner'].get('tunerName') or experiment_config['tuner'].get('optimizationMode'))\
            or experiment_config['tuner'].get('tunerName') and experiment_config['tuner'].get('optimizationMode')\
            and (experiment_config['tuner'].get('tunerCommand') or experiment_config['tuner'].get('tunerCwd')):
        raise Exception('Please choose to use (tunerCommand, tunerCwd) or (tunerName, optimizationMode)')

    if experiment_config['tuner'].get('tunerCommand') and experiment_config['tuner'].get('tunerCwd'):
        check_directory(experiment_config['tuner'], 'tunerCwd')
        experiment_config['tuner']['tunerCwd'] = os.path.abspath(experiment_config['tuner']['tunerCwd'])
    elif experiment_config['tuner'].get('tunerName') and experiment_config['tuner'].get('optimizationMode'):
        check_choice(experiment_config['tuner'], 'tunerName', ['TPE', 'Random', 'Anneal', 'Evolution'])
        check_choice(experiment_config['tuner'], 'optimizationMode', ['Maximize', 'Minimize'])
        if experiment_config['tuner']['optimizationMode'] == 'Maximize':
            experiment_config['tuner']['optimizationMode'] = 'maximize'
        else:
            experiment_config['tuner']['optimizationMode'] = 'minimize'

        experiment_config['tuner']['tunerCommand'] = 'python3 -m %s --optimize_mode %s'\
                                                     % (tuner_algorithm_dict.get(experiment_config['tuner']['tunerName']), experiment_config['tuner']['optimizationMode'])
        experiment_config['tuner']['tunerCwd'] = ''
    else:
        raise ValueError('Please complete tuner information!')

    if experiment_config['tuner'].get('tunerGpuNum'):
        check_digit(experiment_config['tuner'], 'tunerGpuNum', 0, 100)


def validate_assessor_content(experiment_config):
    '''Validate whether assessor in experiment_config is valid'''
    assessor_algorithm_dict = {'Medianstop': 'nni.medianstop_assessor'}

    if 'assessor' in experiment_config:
        if experiment_config['assessor']:
            if experiment_config['assessor'].get('assessorCommand') and experiment_config['assessor'].get('assessorCwd')\
                    and (experiment_config['assessor'].get('assessorName') or experiment_config['assessor'].get('optimizationMode'))\
                    or experiment_config['assessor'].get('assessorName') and experiment_config['assessor'].get('optimizationMode')\
                    and (experiment_config['assessor'].get('assessorCommand') or experiment_config['assessor'].get('assessorCwd')):
                raise Exception('Please choose to use (assessorCommand, assessorCwd) or (assessorName, optimizationMode)')
            if experiment_config['assessor'].get('assessorCommand') and experiment_config['assessor'].get('assessorCwd'):
                check_empty(experiment_config['assessor'], 'assessorCommand')
                check_empty(experiment_config['assessor'], 'assessorCwd')
                check_directory(experiment_config['assessor'], 'assessorCwd')
                experiment_config['assessor']['assessorCwd'] = os.path.abspath(experiment_config['assessor']['assessorCwd'])
                if 'assessorGpuNum' in experiment_config['assessor']:
                    if experiment_config['assessor']['assessorGpuNum']:
                        check_digit(experiment_config['assessor'], 'assessorGpuNum', 0, 100)
            elif experiment_config['assessor'].get('assessorName') and experiment_config['assessor'].get('optimizationMode'):
                check_choice(experiment_config['assessor'], 'assessorName', ['Medianstop'])
                check_choice(experiment_config['assessor'], 'optimizationMode', ['Maximize', 'Minimize'])
                if experiment_config['assessor']['optimizationMode'] == 'Maximize':
                    experiment_config['assessor']['optimizationMode'] = 'maximize'
                else:
                    experiment_config['assessor']['optimizationMode'] = 'minimize'

                experiment_config['assessor']['assessorCommand'] = 'python3 -m %s --optimize_mode %s'\
                        % (assessor_algorithm_dict.get(experiment_config['assessor']['assessorName']), experiment_config['assessor']['optimizationMode'])
                experiment_config['assessor']['assessorCwd'] = ''
            else:
                raise ValueError('Please complete assessor information!')
            
            if experiment_config['assessor'].get('assessorGpuNum'):
                check_digit(experiment_config['assessor'], 'assessorGpuNum', 0, 100)


def validate_trail_content(experiment_config):
    '''Validate whether trial in experiment_config is valid'''
    check_empty(experiment_config, 'trial')
    check_empty(experiment_config['trial'], 'trialCommand')
    check_empty(experiment_config['trial'], 'trialCodeDir')
    check_directory(experiment_config['trial'], 'trialCodeDir')
    experiment_config['trial']['trialCodeDir'] = os.path.abspath(experiment_config['trial']['trialCodeDir'])
    check_empty(experiment_config['trial'], 'trialGpuNum')
    check_digit(experiment_config['trial'], 'trialGpuNum', 0, 100)


def validate_machinelist_content(experiment_config):
    '''Validate whether meachineList in experiment_config is valid'''
    check_empty(experiment_config, 'machineList')
    for i, machine in enumerate(experiment_config['machineList']):
        check_empty(machine, 'ip')
        if machine.get('port') is None:
            experiment_config['machineList'][i]['port'] = 22
        else:
            check_digit(machine, 'port', 0, 65535)
        check_empty(machine, 'username')
        check_empty(machine, 'passwd')


def validate_annotation_content(experiment_config):
    '''Valid whether useAnnotation and searchSpacePath is coexist'''
    if experiment_config.get('useAnnotation'):
        if experiment_config.get('searchSpacePath'):
            print('searchSpacePath', experiment_config.get('searchSpacePath'))
            raise Exception('If you set useAnnotation=true, please leave searchSpacePath empty')
    else:
        # validate searchSpaceFile
        check_empty(experiment_config, 'searchSpacePath')
        check_file(experiment_config, 'searchSpacePath')


def validate_all_content(experiment_config):
    '''Validate whether experiment_config is valid'''
    validate_common_content(experiment_config)
    validate_tuner_content(experiment_config)
    validate_assessor_content(experiment_config)
    validate_trail_content(experiment_config)
    # validate_annotation_content(experiment_config)
    if experiment_config['trainingServicePlatform'] == 'remote':
        validate_machinelist_content(experiment_config)