"docs/en/advanced_guides/datasets/lyft.md" did not exist on "0be27ffba9514c65d333f143804d33f1cef80d73"
graph.py 8.57 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-

import copy
import json
import random
from enum import Enum, unique

@unique
class LayerType(Enum):
    attention = 0
    self_attention = 1
    rnn = 2
    input = 3
    output = 4

class Layer(object):
    def __init__(self, type, input=None, output=None, size=None):
        self.input = input if input is not None else []
        self.output = output if output is not None else []
        self.type = type
        self.is_delete = False
        self.size = size
        if type == LayerType.attention.value:
            self.input_size = 2
            self.output_size = 1
        elif type == LayerType.rnn.value:
            self.input_size = 1
            self.output_size = 1
        elif type == LayerType.self_attention.value:
            self.input_size = 1
            self.output_size = 1
        elif type == LayerType.input.value:
            self.input_size = 0
            self.output_size = 1
        elif type == LayerType.output.value:
            self.input_size = 1
            self.output_size = 0
        else:
            print(type)
    def set_size(self, id, size):
        if self.type == LayerType.attention.value:
            if self.input[0] == id:
                self.size = size
        if self.type == LayerType.rnn.value:
            self.size = size
        if self.type == LayerType.self_attention.value:
            self.size = size
        if self.type == LayerType.output.value:
            if self.size != size:
                return False
        return True

    def clear_size(self):
        if self.type == LayerType.attention.value or LayerType.rnn.value or LayerType.self_attention.value:
            self.size = None

    def __str__(self):
        return 'input:' + str(self.input) + ' output:' + str(self.output) + ' type:' + str(
            self.type) + ' is_delete:' + str(self.is_delete) + ' size:' + str(self.size)

def graph_dumps(graph):
    return json.dumps(graph, default=lambda obj: obj.__dict__)

def graph_loads(js):
    layers = []
    for layer in js['layers']:
        p = Layer(layer['type'],layer['input'],layer['output'],layer['size'])
        p.is_delete = layer['is_delete']
        layers.append(p)
    graph = Graph(js['max_layer_num'],[], [], [])
    graph.layers = layers
    return graph

class Graph(object):
    def __init__(self, max_layer_num, input, output, hide):
        self.layers = []
        self.max_layer_num = max_layer_num

        for layer in input:
            self.layers.append(layer)
        for layer in output:
            self.layers.append(layer)
        if hide is not None:
            for layer in hide:
                self.layers.append(layer)
        assert self.is_legal()

    def is_topology(self, layers=None):
        if layers == None:
            layers = self.layers
        layers_nodle = []
        xx = []
        for i in range(len(layers)):
            if layers[i].is_delete == False:
                layers_nodle.append(i)
        while True:
            flag_break = True
            layers_toremove = []
            for layer1 in layers_nodle:
                flag_arrive = True
                for layer2 in layers[layer1].input:
                    if layer2 in layers_nodle:
                        flag_arrive = False
                if flag_arrive == True:
                    for layer2 in layers[layer1].output:
                        if layers[layer2].set_size(layer1, layers[layer1].size) == False:  # Size is error
                            return False
                    layers_toremove.append(layer1)
                    xx.append(layer1)
                    flag_break = False
            for layer in layers_toremove:
                layers_nodle.remove(layer)
            xx.append('|')
            if flag_break == True:
                break
        if len(layers_nodle) > 0:  # There is loop in graph || some layers can't to arrive
            return False
        return xx

    def layer_num(self, layers=None):
        if layers == None:
            layers = self.layers
        layer_num = 0
        for layer in layers:
            if layer.is_delete == False and layer.type != LayerType.input.value and layer.type != LayerType.output.value:
                layer_num += 1
        return layer_num

    def is_legal(self, layers=None):
        if layers == None:
            layers = self.layers

        for layer in layers:
            if layer.is_delete == False:
                if len(layer.input) != layer.input_size:
                    return False
                if len(layer.output) < layer.output_size:
                    return False

        # layer_num <= max_layer_num
        if self.layer_num(layers) > self.max_layer_num:
            return False

        if self.is_topology(layers) == False:  # There is loop in graph || some layers can't to arrive
            return False

        return True

    def mutation(self, only_add=False):
        types = []
        if self.layer_num() < self.max_layer_num:
            types.append(0)
            types.append(1)
        if self.layer_num() > 0:
            types.append(2)
            types.append(3)
        # 0 : add a layer , delete a edge
        # 1 : add a layer , change a edge
        # 2 : delete a layer, delete a edge
        # 3 : delete a layer, change a edge
        type = random.choice(types)
        layer_type = random.choice([LayerType.attention.value, LayerType.self_attention.value, LayerType.rnn.value])
        layers = copy.deepcopy(self.layers)
        cnt_try = 0
        while True:
            layers_in = []
            layers_out = []
            layers_del = []
            for layer1 in range(len(layers)):
                layer = layers[layer1]
                if layer.is_delete == False:
                    if layer.type != LayerType.output.value:
                        layers_in.append(layer1)
                    if layer.type != LayerType.input.value:
                        layers_out.append(layer1)
                    if layer.type != LayerType.output.value and layer.type != LayerType.input.value:
                        layers_del.append(layer1)
            if type <= 1:
                new_id = len(layers)
                out = random.choice(layers_out)
                input = []
                output = [out]
                pos = random.randint(0, len(layers[out].input) - 1)
                last_in = layers[out].input[pos]
                layers[out].input[pos] = new_id
                if type == 0:
                    layers[last_in].output.remove(out)
                if type == 1:
                    layers[last_in].output.remove(out)
                    layers[last_in].output.append(new_id)
                    input = [last_in]
                lay = Layer(type=layer_type, input=input, output=output)
                while len(input) < lay.input_size:
                    layer1 = random.choice(layers_in)
                    input.append(layer1)
                    layers[layer1].output.append(new_id)
                lay.input = input
                layers.append(lay)
            else:
                layer1 = random.choice(layers_del)
                for layer2 in layers[layer1].output:
                    layers[layer2].input.remove(layer1)
                    if type == 2:
                        v2 = random.choice(layers_in)
                    else:
                        v2 = random.choice(layers[layer1].input)
                    layers[layer2].input.append(v2)
                    layers[v2].output.append(layer2)
                for layer2 in layers[layer1].input:
                    layers[layer2].output.remove(layer1)
                layers[layer1].is_delete = True

            if self.is_legal(layers):
                self.layers = layers
                break
            else:
                layers = copy.deepcopy(self.layers)
                cnt_try += 1

    def __str__(self):
        info = ""
        for id, layer in enumerate(self.layers):
            if layer.is_delete == False:
                info += 'id:%d ' % id + str(layer) + '\n'
        return info

if __name__ == '__main__':
    graph = Graph(10,
                  input=[Layer(LayerType.input.value, output=[4, 5], size='x'), Layer(LayerType.input.value, output=[4, 5], size='y')],
                  output=[Layer(LayerType.output.value, input=[4], size='x'), Layer(LayerType.output.value, input=[5], size='y')],
                  hide=[Layer(LayerType.attention.value, input=[0, 1], output=[2]), Layer(LayerType.attention.value, input=[1, 0], output=[3])])

    s = graph_dumps(graph)
    g = graph_loads(json.loads(s))
    print(g)
    print(s)

    s = '''{"count":2,"array":[{"input":%s,"output":{"output":0.7}}]}'''%s
    print(len(s))
    print(s)