customer_tuner.py 4.95 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from graph import *

import copy
import json
import logging
import random
import numpy as np

from nni.tuner import Tuner

logger = logging.getLogger('ga_customer_tuner')


@unique
class OptimizeMode(Enum):
    Minimize = 'minimize'
    Maximize = 'maximize'


def init_population(population_size=32):
    population = []
    graph = Graph(4,
                  input=[Layer(LayerType.input.value, output=[4, 5], size='x'), Layer(LayerType.input.value, output=[4, 5], size='y')],
                  output=[Layer(LayerType.output.value, input=[4], size='x'), Layer(LayerType.output.value, input=[5], size='y')],
                  hide=[Layer(LayerType.attention.value, input=[0, 1], output=[2]), Layer(LayerType.attention.value, input=[1, 0], output=[3])])
    for _ in range(population_size):
        g = copy.deepcopy(graph)
        for _ in range(1):
            g.mutation()
        population.append(Individual(g, result=None))
    return population


class Individual(object):
    def __init__(self, config=None, info=None, result=None, save_dir=None):
        self.config = config
        self.result = result
        self.info = info
        self.restore_dir = None
        self.save_dir = save_dir

    def __str__(self):
        return "info: " + str(self.info) + ", config :" + str(self.config) + ", result: " + str(self.result)

    def mutation(self, config=None, info=None, save_dir=None):
        self.result = None
        self.config = config
        self.config.mutation()
        self.restore_dir = self.save_dir
        self.save_dir = save_dir
        self.info = info


class CustomerTuner(Tuner):
    def __init__(self, optimize_mode, population_size = 32):
        self.optimize_mode = OptimizeMode(optimize_mode)
        self.population = init_population(population_size)

        assert len(self.population) == population_size
        logger.debug('init population done.')
        return

    def generate_parameters(self, parameter_id):
        """Returns a set of trial graph config, as a serializable object.
        parameter_id : int
        """
        if len(self.population) <= 0:
            logger.debug("the len of poplution lower than zero.")
            raise Exception('The population is empty')
        pos = -1
        for i in range(len(self.population)):
            if self.population[i].result == None:
                pos = i
                break
        if pos != -1:
            indiv = copy.deepcopy(self.population[pos])
            self.population.pop(pos)
            temp = json.loads(graph_dumps(indiv.config))
        else:
            random.shuffle(self.population)
            if self.population[0].result > self.population[1].result:
                self.population[0] = self.population[1]
            indiv = copy.deepcopy(self.population[0])
            self.population.pop(1)
            indiv.mutation()
            graph = indiv.config
            temp =  json.loads(graph_dumps(graph))
        logger.debug('generate_parameter return value is:')
        logger.debug(temp)
        return temp


    def receive_trial_result(self, parameter_id, parameters, reward):
        '''
        Record an observation of the objective function
        parameter_id : int
        parameters : dict of parameters
        reward : reward of one trial
        '''
        if self.optimize_mode is OptimizeMode.Minimize:
            reward = -reward

        logger.debug('receive trial result is:\n')
        logger.debug(str(parameters))
        logger.debug(str(reward))

        indiv = graph_loads(parameters)
        indiv.result = reward
        self.population.append(indiv)
        return

    def update_search_space(self, data):
        pass

if __name__ =='__main__':
    tuner = CustomerTuner(OptimizeMode.Maximize)
    config = tuner.generate_parameter(0)
    with open('./data.json', 'w') as outfile:
        json.dump(config, outfile)
    tuner.receive_trial_result(0, config, 0.99)