image_ops.py 5.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn


PRIMITIVES = [
    'max_pool_3x3',
    'avg_pool_3x3',
    'skip_connect', # identity
    'sep_conv_3x3',
    'sep_conv_5x5',
    'dil_conv_3x3',
    'dil_conv_5x5',
    'none'
]

OPS = {
    'none': lambda C, stride, affine: Zero(stride),
    'avg_pool_3x3': lambda C, stride, affine: PoolBN('avg', C, 3, stride, 1, affine=affine),
    'max_pool_3x3': lambda C, stride, affine: PoolBN('max', C, 3, stride, 1, affine=affine),
    'skip_connect': lambda C, stride, affine: \
        Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
    'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
    'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
    'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
    'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine), # 5x5
    'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine), # 9x9
    'conv_7x1_1x7': lambda C, stride, affine: FacConv(C, C, 7, stride, 3, affine=affine)
}


def drop_path_(x, drop_prob, training):
    if training and drop_prob > 0.:
        keep_prob = 1. - drop_prob
        # per data point mask; assuming x in cuda.
        mask = torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob)
        x.div_(keep_prob).mul_(mask)

    return x


class DropPath_(nn.Module):
    def __init__(self, p=0.):
        """ [!] DropPath is inplace module
        Args:
            p: probability of an path to be zeroed.
        """
        super().__init__()
        self.p = p

    def extra_repr(self):
        return 'p={}, inplace'.format(self.p)

    def forward(self, x):
        drop_path_(x, self.p, self.training)

        return x


class PoolBN(nn.Module):
    """
    AvgPool or MaxPool - BN
    """
    def __init__(self, pool_type, C, kernel_size, stride, padding, affine=True):
        """
        Args:
            pool_type: 'max' or 'avg'
        """
        super().__init__()
        if pool_type.lower() == 'max':
            self.pool = nn.MaxPool2d(kernel_size, stride, padding)
        elif pool_type.lower() == 'avg':
            self.pool = nn.AvgPool2d(kernel_size, stride, padding, count_include_pad=False)
        else:
            raise ValueError()

        self.bn = nn.BatchNorm2d(C, affine=affine)

    def forward(self, x):
        out = self.pool(x)
        out = self.bn(out)
        return out


class StdConv(nn.Module):
    """ Standard conv
    ReLU - Conv - BN
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_out, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class FacConv(nn.Module):
    """ Factorized conv
    ReLU - Conv(Kx1) - Conv(1xK) - BN
    """
    def __init__(self, C_in, C_out, kernel_length, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, (kernel_length, 1), stride, padding, bias=False),
            nn.Conv2d(C_in, C_out, (1, kernel_length), stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class DilConv(nn.Module):
    """ (Dilated) depthwise separable conv
    ReLU - (Dilated) depthwise separable - Pointwise - BN
    If dilation == 2, 3x3 conv => 5x5 receptive field
                      5x5 conv => 9x9 receptive field
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in,
                      bias=False),
            nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class SepConv(nn.Module):
    """ Depthwise separable conv
    DilConv(dilation=1) * 2
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            DilConv(C_in, C_in, kernel_size, stride, padding, dilation=1, affine=affine),
            DilConv(C_in, C_out, kernel_size, 1, padding, dilation=1, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class Identity(nn.Module):

    def forward(self, x):
        return x


class Zero(nn.Module):
    def __init__(self, stride):
        super().__init__()
        self.stride = stride

    def forward(self, x):
        if self.stride == 1:
            return x * 0.

        # re-sizing by stride
        return x[:, :, ::self.stride, ::self.stride] * 0.


class FactorizedReduce(nn.Module):
    """
    Reduce feature map size by factorized pointwise(stride=2).
    """
    def __init__(self, C_in, C_out, affine=True):
        super().__init__()
        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(C_out, affine=affine)

    def forward(self, x):
        x = self.relu(x)
        out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1)
        out = self.bn(out)
        return out