AutoPruningUsingTuners.rst 4.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Automatic Model Pruning using NNI Tuners
========================================

It's convenient to implement auto model pruning with NNI compression and NNI tuners

First, model compression with NNI
---------------------------------

You can easily compress a model with NNI compression. Take pruning for example, you can prune a pretrained model with LevelPruner like this

.. code-block:: python

   from nni.algorithms.compression.pytorch.pruning import LevelPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }]
   pruner = LevelPruner(model, config_list)
   pruner.compress()

18
The 'default' op_type stands for the module types defined in :githublink:`default_layers.py <nni/compression/pytorch/default_layers.py>` for pytorch.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Therefore ``{ 'sparsity': 0.8, 'op_types': ['default'] }``\ means that **all layers with specified op_types will be compressed with the same 0.8 sparsity**. When ``pruner.compress()`` called, the model is compressed with masks and after that you can normally fine tune this model and **pruned weights won't be updated** which have been masked.

Then, make this automatic
-------------------------

The previous example manually choosed LevelPruner and pruned all layers with the same sparsity, this is obviously sub-optimal because different layers may have different redundancy. Layer sparsity should be carefully tuned to achieve least model performance degradation and this can be done with NNI tuners.

The first thing we need to do is to design a search space, here we use a nested search space which contains  choosing pruning algorithm and optimizing layer sparsity.

.. code-block:: json

   {
     "prune_method": {
       "_type": "choice",
       "_value": [
         {
           "_name": "agp",
           "conv0_sparsity": {
             "_type": "uniform",
             "_value": [
               0.1,
               0.9
             ]
           },
           "conv1_sparsity": {
             "_type": "uniform",
             "_value": [
               0.1,
               0.9
             ]
           },
         },
         {
           "_name": "level",
           "conv0_sparsity": {
             "_type": "uniform",
             "_value": [
               0.1,
               0.9
             ]
           },
           "conv1_sparsity": {
             "_type": "uniform",
             "_value": [
               0.01,
               0.9
             ]
           },
         }
       ]
     }
   }

Then we need to modify our codes for few lines

.. code-block:: python

   import nni
   from nni.algorithms.compression.pytorch.pruning import *
   params = nni.get_parameters()
   conv0_sparsity = params['prune_method']['conv0_sparsity']
   conv1_sparsity = params['prune_method']['conv1_sparsity']
   # these raw sparsity should be scaled if you need total sparsity constrained
   config_list_level = [{ 'sparsity': conv0_sparsity, 'op_name': 'conv0' },
                        { 'sparsity': conv1_sparsity, 'op_name': 'conv1' }]
   config_list_agp = [{'initial_sparsity': 0, 'final_sparsity': conv0_sparsity,
                       'start_epoch': 0, 'end_epoch': 3,
                       'frequency': 1,'op_name': 'conv0' },
                      {'initial_sparsity': 0, 'final_sparsity': conv1_sparsity,
                       'start_epoch': 0, 'end_epoch': 3,
                       'frequency': 1,'op_name': 'conv1' },]
   PRUNERS = {'level':LevelPruner(model, config_list_level), 'agp':AGPPruner(model, config_list_agp)}
   pruner = PRUNERS(params['prune_method']['_name'])
   pruner.compress()
   ... # fine tuning
   acc = evaluate(model) # evaluation
   nni.report_final_results(acc)

Last, define our task and automatically tuning pruning methods with layers sparsity

.. code-block:: yaml

   authorName: default
   experimentName: Auto_Compression
   trialConcurrency: 2
   maxExecDuration: 100h
   maxTrialNum: 500
   #choice: local, remote, pai
   trainingServicePlatform: local
   #choice: true, false
   useAnnotation: False
   searchSpacePath: search_space.json
   tuner:
     #choice: TPE, Random, Anneal...
     builtinTunerName: TPE
     classArgs:
       #choice: maximize, minimize
       optimize_mode: maximize
   trial:
     command: bash run_prune.sh
     codeDir: .
     gpuNum: 1