test_quantize_model_speedup.py 7.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn.functional as F
from torchvision.models.vgg import vgg16
from torchvision import datasets, transforms
import unittest
from unittest import TestCase, main

from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer
from nni.compression.pytorch.quantization_speedup import ModelSpeedupTensorRT

torch.manual_seed(0)

class BackboneModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 20, 5, 1)
        self.conv2 = torch.nn.Conv2d(20, 50, 5, 1)
        self.fc1 = torch.nn.Linear(4 * 4 * 50, 500)
        self.fc2 = torch.nn.Linear(500, 10)
        self.relu1 = torch.nn.ReLU6()
        self.relu2 = torch.nn.ReLU6()
        self.relu3 = torch.nn.ReLU6()
        self.max_pool1 = torch.nn.MaxPool2d(2, 2)
        self.max_pool2 = torch.nn.MaxPool2d(2, 2)

    def forward(self, x):
        x = self.relu1(self.conv1(x))
        x = self.max_pool1(x)
        x = self.relu2(self.conv2(x))
        x = self.max_pool2(x)
        x = x.view(-1, x.size()[1:].numel())
        x = self.relu3(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

class QuantizationSpeedupTestCase(TestCase):
    def __init__(self, methodName: str) -> None:
        super().__init__(methodName=methodName)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('data', train=True, download=True, transform=trans),
            batch_size=64, shuffle=True)
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('data', train=False, transform=trans),
            batch_size=1000, shuffle=True)

    def _train(self, model, optimizer):
        model.train()
        for batch_idx, (data, target) in enumerate(self.train_loader):
            data, target = data.to(self.device), target.to(self.device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(self.train_loader), loss.item()))

    def _test(self, model):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in self.test_loader:
                data, target = data.to(self.device), target.to(self.device)
                output = model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()
        test_loss /= len(self.test_loader.dataset)

        print('Loss: {}  Accuracy: {}%)\n'.format(
            test_loss, 100 * correct / len(self.test_loader.dataset)))

    def _test_trt(self, engine):
        test_loss = 0
        correct = 0
        time_elasped = 0
        for data, target in self.test_loader:
            output, time = engine.inference(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
            time_elasped += time
        test_loss /= len(self.test_loader.dataset)

        print('Loss: {}  Accuracy: {}%'.format(
            test_loss, 100 * correct / len(self.test_loader.dataset)))
        print("Inference elapsed_time (whole dataset): {}s".format(time_elasped))

    def test_post_training_quantization_speedup(self):
        model = BackboneModel()

        configure_list = {
            'conv1':{'weight_bit':8, 'activation_bit':8},
            'conv2':{'weight_bit':32, 'activation_bit':32},
            'fc1':{'weight_bit':16, 'activation_bit':16},
            'fc2':{'weight_bit':8, 'activation_bit':8}
        }

        optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

        model.to(self.device)
        for epoch in range(1):
            print('# Epoch {} #'.format(epoch))
            self._train(model, optimizer)
            self._test(model)

        batch_size = 32
        input_shape = (batch_size, 1, 28, 28)
        calibration_path = "calibration.cache"
        onnx_path = "default_model.onnx"

        engine = ModelSpeedupTensorRT(model, input_shape, config=configure_list, calib_data_loader=self.train_loader, batchsize=batch_size)
        engine.compress()
        self._test_trt(engine)
        os.remove(calibration_path)
        os.remove(onnx_path)
    
    def test_qat_quantization_speedup(self):
        model = BackboneModel()

        configure_list = [{
                'quant_types': ['weight', 'output'],
                'quant_bits': {'weight':8, 'output':8},
                'op_names': ['conv1']
            }, {
                'quant_types': ['output'],
                'quant_bits': {'output':8},
                'op_names': ['relu1']
            }, {
                'quant_types': ['weight', 'output'],
                'quant_bits': {'weight':8, 'output':8},
                'op_names': ['conv2']
            }, {
                'quant_types': ['output'],
                'quant_bits': {'output':8},
                'op_names': ['relu2']
            }
        ]

        # finetune the model by using QAT
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
        quantizer = QAT_Quantizer(model, configure_list, optimizer)
        quantizer.compress()

        model.to(self.device)
        for epoch in range(1):
            print('# Epoch {} #'.format(epoch))
            self._train(model, optimizer)
            self._test(model)

        model_path = "mnist_model.pth"
        calibration_path = "mnist_calibration.pth"
        calibration_config = quantizer.export_model(model_path, calibration_path)

        self._test(model)

        print("calibration_config: ", calibration_config)

        batch_size = 32
        input_shape = (batch_size, 1, 28, 28)

        engine = ModelSpeedupTensorRT(model, input_shape, config=calibration_config, batchsize=batch_size)
        engine.compress()

        self._test_trt(engine)

        os.remove(model_path)
        os.remove(calibration_path)
    
    def test_export_load_quantized_model_vgg16(self):
        model = vgg16()

        configure_list = {
            'features.0':{'weight_bit':8, 'activation_bit':8},
            'features.1':{'weight_bit':32, 'activation_bit':32},
            'features.2':{'weight_bit':16, 'activation_bit':16},
            'features.4':{'weight_bit':8, 'activation_bit':8},
            'features.7':{'weight_bit':8, 'activation_bit':8},
            'features.8':{'weight_bit':8, 'activation_bit':8},
            'features.11':{'weight_bit':8, 'activation_bit':8}
        }

        model.to(self.device)

        batch_size = 1
        input_shape = (batch_size, 3, 224, 224)
        dummy_input = torch.randn(input_shape).to(self.device)

        output_torch = model(dummy_input)

        engine = ModelSpeedupTensorRT(model, input_shape, config=configure_list, calib_data_loader=dummy_input, batchsize=batch_size)
        engine.compress()
        output, _ = engine.inference(dummy_input)

        # verify result shape
        assert(output.shape == output_torch.shape)

        export_path = "vgg16_trt.engine"
        calibration_path = "calibration.cache"
        engine.export_quantized_model(export_path)
        engine.load_quantized_model(export_path)
        output, _ = engine.inference(dummy_input)

        assert(output.shape == output_torch.shape)

        os.remove(export_path)
        os.remove(calibration_path)
    
if __name__ == '__main__':
    main()