Pruner.md 17.5 KB
Newer Older
1
# Supported Pruning Algorithms on NNI
2

3
We provide several pruning algorithms that support fine-grained weight pruning and structural filter pruning. **Fine-grained Pruning** generally results in  unstructured models, which need specialized haredware or software to speed up the sparse network. **Filter Pruning** achieves acceleratation by removing the entire filter.  We also provide an algorithm to control the **pruning schedule**.
4
5


6
**Fine-grained Pruning**
7
* [Level Pruner](#level-pruner)
8
9
  
**Filter Pruning**
10
* [Slim Pruner](#slim-pruner)
11
12
13
14
15
16
17
* [FPGM Pruner](#fpgm-pruner)
* [L1Filter Pruner](#l1filter-pruner)
* [L2Filter Pruner](#l2filter-pruner)
* [APoZ Rank Pruner](#activationapozrankfilterpruner)
* [Activation Mean Rank Pruner](#activationmeanrankfilterpruner)
* [Taylor FO On Weight Pruner](#taylorfoweightfilterpruner)

18
19
**Pruning Schedule**
* [AGP Pruner](#agp-pruner)
20

21
22
23
**Others**
* [Lottery Ticket Hypothesis](#lottery-ticket-hypothesis)

24
25
## Level Pruner

Tang Lang's avatar
Tang Lang committed
26
This is one basic one-shot pruner: you can set a target sparsity level (expressed as a fraction, 0.6 means we will prune 60%). 
27
28
29
30
31
32

We first sort the weights in the specified layer by their absolute values. And then mask to zero the smallest magnitude weights until the desired sparsity level is reached.

### Usage

Tensorflow code
33
```python
34
from nni.compression.tensorflow import LevelPruner
chicm-ms's avatar
chicm-ms committed
35
config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }]
QuanluZhang's avatar
QuanluZhang committed
36
37
pruner = LevelPruner(model_graph, config_list)
pruner.compress()
38
39
40
```

PyTorch code
41
```python
42
from nni.compression.torch import LevelPruner
chicm-ms's avatar
chicm-ms committed
43
config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }]
QuanluZhang's avatar
QuanluZhang committed
44
45
pruner = LevelPruner(model, config_list)
pruner.compress()
46
47
48
49
50
51
52
```

#### User configuration for Level Pruner
* **sparsity:** This is to specify the sparsity operations to be compressed to

***

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
## Slim Pruner

This is an one-shot pruner, In ['Learning Efficient Convolutional Networks through Network Slimming'](https://arxiv.org/pdf/1708.06519.pdf), authors Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan and Changshui Zhang.

![](../../img/slim_pruner.png)

> Slim Pruner **prunes channels in the convolution layers by masking corresponding scaling factors in the later BN layers**, L1 regularization on the scaling factors should be applied in batch normalization (BN) layers while training, scaling factors of BN layers are **globally ranked** while pruning, so the sparse model can be automatically found given sparsity.

### Usage

PyTorch code

```python
from nni.compression.torch import SlimPruner
config_list = [{ 'sparsity': 0.8, 'op_types': ['BatchNorm2d'] }]
pruner = SlimPruner(model, config_list)
pruner.compress()
```

#### User configuration for Slim Pruner

- **sparsity:** This is to specify the sparsity operations to be compressed to
- **op_types:** Only BatchNorm2d is supported in Slim Pruner

77
78
79
80
81
82
83
84
85
86
87
88
### Reproduced Experiment

We implemented one of the experiments in ['Learning Efficient Convolutional Networks through Network Slimming'](https://arxiv.org/pdf/1708.06519.pdf), we pruned $70\%$ channels in the **VGGNet** for CIFAR-10 in the paper, in which $88.5\%$ parameters are pruned. Our experiments results are as follows:

| Model         | Error(paper/ours) | Parameters | Pruned    |
| ------------- | ----------------- | ---------- | --------- |
| VGGNet        | 6.34/6.40     | 20.04M   |           |
| Pruned-VGGNet | 6.20/6.26     | 2.03M    | 88.5% |

The experiments code can be found at [examples/model_compress]( https://github.com/microsoft/nni/tree/master/examples/model_compress/)

***
89

90
## FPGM Pruner
91

Tang Lang's avatar
Tang Lang committed
92
This is an one-shot pruner, FPGM Pruner is an implementation of paper [Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration](https://arxiv.org/pdf/1811.00250.pdf)
93

94
95
96
97
FPGMPruner prune filters with the smallest geometric median

 ![](../../img/fpgm_fig1.png)

98
99
>Previous works utilized “smaller-norm-less-important” criterion to prune filters with smaller norm values in a convolutional neural network. In this paper, we analyze this norm-based criterion and point out that its effectiveness depends on two requirements that are not always met: (1) the norm deviation of the filters should be large; (2) the minimum norm of the filters should be small. To solve this problem, we propose a novel filter pruning method, namely Filter Pruning via Geometric Median (FPGM), to compress the model regardless of those two requirements. Unlike previous methods, FPGM compresses CNN models by pruning filters with redundancy, rather than those with “relatively less” importance.

100
### Usage
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Tensorflow code
```python
from nni.compression.tensorflow import FPGMPruner
config_list = [{
    'sparsity': 0.5,
    'op_types': ['Conv2D']
}]
pruner = FPGMPruner(model, config_list)
pruner.compress()
```
PyTorch code
```python
from nni.compression.torch import FPGMPruner
config_list = [{
    'sparsity': 0.5,
    'op_types': ['Conv2d']
}]
pruner = FPGMPruner(model, config_list)
pruner.compress()
```

#### User configuration for FPGM Pruner
124
125
- **sparsity:** How much percentage of convolutional filters are to be pruned.
- **op_types:** Only Conv2d is supported in L1Filter Pruner
126
127

***
Tang Lang's avatar
Tang Lang committed
128

129
## L1Filter Pruner
Tang Lang's avatar
Tang Lang committed
130

131
This is an one-shot pruner, In ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710), authors Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet and Hans Peter Graf.
Tang Lang's avatar
Tang Lang committed
132
133
134
135
136
137
138
139
140
141

![](../../img/l1filter_pruner.png)

> L1Filter Pruner prunes filters in the **convolution layers**
>
> The procedure of pruning m filters from the ith convolutional layer is as follows:
>
> 1. For each filter ![](http://latex.codecogs.com/gif.latex?F_{i,j}), calculate the sum of its absolute kernel weights![](http://latex.codecogs.com/gif.latex?s_j=\sum_{l=1}^{n_i}\sum|K_l|)
> 2. Sort the filters by ![](http://latex.codecogs.com/gif.latex?s_j).
> 3. Prune ![](http://latex.codecogs.com/gif.latex?m) filters with the smallest sum values and their corresponding feature maps. The
142
143
>      kernels in the next convolutional layer corresponding to the pruned feature maps are also
>        removed.
Tang Lang's avatar
Tang Lang committed
144
> 4. A new kernel matrix is created for both the ![](http://latex.codecogs.com/gif.latex?i)th and ![](http://latex.codecogs.com/gif.latex?i+1)th layers, and the remaining kernel
145
>      weights are copied to the new model.
Tang Lang's avatar
Tang Lang committed
146

147
### Usage
148
149
150
151

PyTorch code

```python
Tang Lang's avatar
Tang Lang committed
152
153
154
155
156
157
158
159
160
from nni.compression.torch import L1FilterPruner
config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
pruner = L1FilterPruner(model, config_list)
pruner.compress()
```

#### User configuration for L1Filter Pruner

- **sparsity:** This is to specify the sparsity operations to be compressed to
161
- **op_types:** Only Conv2d is supported in L1Filter Pruner
162

163
### Reproduced Experiment
164
165
166
167
168
169
170
171
172
173

We implemented one of the experiments in ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710) with **L1FilterPruner**, we pruned **VGG-16** for CIFAR-10 to **VGG-16-pruned-A** in the paper, in which $64\%$ parameters are pruned. Our experiments results are as follows:

| Model           | Error(paper/ours) | Parameters      | Pruned   |
| --------------- | ----------------- | --------------- | -------- |
| VGG-16          | 6.75/6.49     | 1.5x10^7 |          |
| VGG-16-pruned-A | 6.60/6.47     | 5.4x10^6 | 64.0% |

The experiments code can be found at [examples/model_compress]( https://github.com/microsoft/nni/tree/master/examples/model_compress/)

174
175
***

176
## L2Filter Pruner
177

178
This is a structured pruning algorithm that prunes the filters with the smallest L2 norm of the weights. It is implemented as a one-shot pruner.
179

180
### Usage
181
182
183
184
185
186
187
188
189
190

PyTorch code

```python
from nni.compression.torch import L2FilterPruner
config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
pruner = L2FilterPruner(model, config_list)
pruner.compress()
```

191
### User configuration for L2Filter Pruner
192
193

- **sparsity:** This is to specify the sparsity operations to be compressed to
194
- **op_types:** Only Conv2d is supported in L2Filter Pruner
195

196
197
***

198
## ActivationAPoZRankFilterPruner
199

200
ActivationAPoZRankFilterPruner is a pruner which prunes the filters with the smallest importance criterion `APoZ` calculated from the output activations of convolution layers to achieve a preset level of network sparsity. The pruning criterion `APoZ` is explained in the paper [Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures](https://arxiv.org/abs/1607.03250).
201

202
203
204
The APoZ is defined as:

![](../../img/apoz.png)
205

206
### Usage
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

PyTorch code

```python
from nni.compression.torch import ActivationAPoZRankFilterPruner
config_list = [{
    'sparsity': 0.5,
    'op_types': ['Conv2d']
}]
pruner = ActivationAPoZRankFilterPruner(model, config_list, statistics_batch_num=1)
pruner.compress()
```

Note: ActivationAPoZRankFilterPruner is used to prune convolutional layers within deep neural networks, therefore the `op_types` field supports only convolutional layers.

You can view example for more information

224
### User configuration for ActivationAPoZRankFilterPruner
225
226
227
228
229
230

- **sparsity:** How much percentage of convolutional filters are to be pruned.
- **op_types:** Only Conv2d is supported in ActivationAPoZRankFilterPruner

***

231
## ActivationMeanRankFilterPruner
232

233
ActivationMeanRankFilterPruner is a pruner which prunes the filters with the smallest importance criterion `mean activation` calculated from the output activations of convolution layers to achieve a preset level of network sparsity. The pruning criterion `mean activation` is explained in section 2.2 of the paper[Pruning Convolutional Neural Networks for Resource Efficient Inference](https://arxiv.org/abs/1611.06440). Other pruning criteria mentioned in this paper will be supported in future release.
234

235
### Usage
236
237
238
239
240
241
242
243
244

PyTorch code

```python
from nni.compression.torch import ActivationMeanRankFilterPruner
config_list = [{
    'sparsity': 0.5,
    'op_types': ['Conv2d']
}]
245
pruner = ActivationMeanRankFilterPruner(model, config_list, statistics_batch_num=1)
246
247
248
249
250
251
252
pruner.compress()
```

Note: ActivationMeanRankFilterPruner is used to prune convolutional layers within deep neural networks, therefore the `op_types` field supports only convolutional layers.

You can view example for more information

253
### User configuration for ActivationMeanRankFilterPruner
254
255

- **sparsity:** How much percentage of convolutional filters are to be pruned.
256
257
- **op_types:** Only Conv2d is supported in ActivationMeanRankFilterPruner.

258
***
259

260
## TaylorFOWeightFilterPruner
261

262
TaylorFOWeightFilterPruner is a pruner which prunes convolutional layers based on estimated importance calculated from the first order taylor expansion on weights to achieve a preset level of network sparsity. The estimated importance of filters is defined as the paper [Importance Estimation for Neural Network Pruning](http://jankautz.com/publications/Importance4NNPruning_CVPR19.pdf). Other pruning criteria mentioned in this paper will be supported in future release.
263
264
265
266
267

> 

![](../../img/importance_estimation_sum.png)

268
### Usage
269
270
271
272
273
274
275
276
277

PyTorch code

```python
from nni.compression.torch import TaylorFOWeightFilterPruner
config_list = [{
    'sparsity': 0.5,
    'op_types': ['Conv2d']
}]
278
pruner = TaylorFOWeightFilterPruner(model, config_list, statistics_batch_num=1)
279
280
281
282
283
pruner.compress()
```

You can view example for more information

284
### User configuration for TaylorFOWeightFilterPruner
285
286
287
288

- **sparsity:** How much percentage of convolutional filters are to be pruned.
- **op_types:** Currently only Conv2d is supported in TaylorFOWeightFilterPruner.

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
***

## AGP Pruner
This is an iterative pruner, In [To prune, or not to prune: exploring the efficacy of pruning for model compression](https://arxiv.org/abs/1710.01878), authors Michael Zhu and Suyog Gupta provide an algorithm to prune the weight gradually.

>We introduce a new automated gradual pruning algorithm in which the sparsity is increased from an initial sparsity value si (usually 0) to a final sparsity value sf over a span of n pruning steps, starting at training step t0 and with pruning frequency ∆t:
![](../../img/agp_pruner.png)
>The binary weight masks are updated every ∆t steps as the network is trained to gradually increase the sparsity of the network while allowing the network training steps to recover from any pruning-induced loss in accuracy. In our experience, varying the pruning frequency ∆t between 100 and 1000 training steps had a negligible impact on the final model quality. Once the model achieves the target sparsity sf , the weight masks are no longer updated. The intuition behind this sparsity function in equation

### Usage
You can prune all weight from 0% to 80% sparsity in 10 epoch with the code below.

PyTorch code
```python
from nni.compression.torch import AGP_Pruner
config_list = [{
    'initial_sparsity': 0,
    'final_sparsity': 0.8,
    'start_epoch': 0,
    'end_epoch': 10,
    'frequency': 1,
    'op_types': ['default']
}]

# load a pretrained model or train a model before using a pruner
# model = MyModel()
# model.load_state_dict(torch.load('mycheckpoint.pth'))

# AGP pruner prunes model while fine tuning the model by adding a hook on
# optimizer.step(), so an optimizer is required to prune the model.
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)

pruner = AGP_Pruner(model, config_list, optimizer, pruning_algorithm='level')
pruner.compress()
```

AGP pruner uses `LevelPruner` algorithms to prune the weight by default, however you can set `pruning_algorithm` parameter to other values to use other pruning algorithms:
* `level`: LevelPruner
* `slim`: SlimPruner
* `l1`: L1FilterPruner
* `l2`: L2FilterPruner
* `fpgm`: FPGMPruner
* `taylorfo`: TaylorFOWeightFilterPruner
* `apoz`: ActivationAPoZRankFilterPruner
* `mean_activation`: ActivationMeanRankFilterPruner

You should add code below to update epoch number when you finish one epoch in your training code.

PyTorch code
```python
pruner.update_epoch(epoch)
```
You can view example for more information

#### User configuration for AGP Pruner
* **initial_sparsity:** This is to specify the sparsity when compressor starts to compress
* **final_sparsity:** This is to specify the sparsity when compressor finishes to compress
* **start_epoch:** This is to specify the epoch number when compressor starts to compress, default start from epoch 0
* **end_epoch:** This is to specify the epoch number when compressor finishes to compress
* **frequency:** This is to specify every *frequency* number epochs compressor compress once, default frequency=1

***

## Lottery Ticket Hypothesis
[The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks](https://arxiv.org/abs/1803.03635), authors Jonathan Frankle and Michael Carbin,provides comprehensive measurement and analysis, and articulate the *lottery ticket hypothesis*: dense, randomly-initialized, feed-forward networks contain subnetworks (*winning tickets*) that -- when trained in isolation -- reach test accuracy comparable to the original network in a similar number of iterations.

In this paper, the authors use the following process to prune a model, called *iterative prunning*:
>1. Randomly initialize a neural network f(x;theta_0) (where theta_0 follows D_{theta}).
>2. Train the network for j iterations, arriving at parameters theta_j.
>3. Prune p% of the parameters in theta_j, creating a mask m.
>4. Reset the remaining parameters to their values in theta_0, creating the winning ticket f(x;m*theta_0).
>5. Repeat step 2, 3, and 4.

If the configured final sparsity is P (e.g., 0.8) and there are n times iterative pruning, each iterative pruning prunes 1-(1-P)^(1/n) of the weights that survive the previous round.

### Usage

PyTorch code
```python
from nni.compression.torch import LotteryTicketPruner
config_list = [{
    'prune_iterations': 5,
    'sparsity': 0.8,
    'op_types': ['default']
}]
pruner = LotteryTicketPruner(model, config_list, optimizer)
pruner.compress()
for _ in pruner.get_prune_iterations():
    pruner.prune_iteration_start()
    for epoch in range(epoch_num):
        ...
```

The above configuration means that there are 5 times of iterative pruning. As the 5 times iterative pruning are executed in the same run, LotteryTicketPruner needs `model` and `optimizer` (**Note that should add `lr_scheduler` if used**) to reset their states every time a new prune iteration starts. Please use `get_prune_iterations` to get the pruning iterations, and invoke `prune_iteration_start` at the beginning of each iteration. `epoch_num` is better to be large enough for model convergence, because the hypothesis is that the performance (accuracy) got in latter rounds with high sparsity could be comparable with that got in the first round.


*Tensorflow version will be supported later.*

#### User configuration for LotteryTicketPruner

* **prune_iterations:** The number of rounds for the iterative pruning, i.e., the number of iterative pruning.
* **sparsity:** The final sparsity when the compression is done.

### Reproduced Experiment

We try to reproduce the experiment result of the fully connected network on MNIST using the same configuration as in the paper. The code can be referred [here](https://github.com/microsoft/nni/tree/master/examples/model_compress/lottery_torch_mnist_fc.py). In this experiment, we prune 10 times, for each pruning we train the pruned model for 50 epochs.

![](../../img/lottery_ticket_mnist_fc.png)

The above figure shows the result of the fully connected network. `round0-sparsity-0.0` is the performance without pruning. Consistent with the paper, pruning around 80% also obtain similar performance compared to non-pruning, and converges a little faster. If pruning too much, e.g., larger than 94%, the accuracy becomes lower and convergence becomes a little slower. A little different from the paper, the trend of the data in the paper is relatively more clear.

400
401
402