test_builtin_tuners.py 17.1 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

4
import glob
Deshui Yu's avatar
Deshui Yu committed
5
import json
6
7
import logging
import os
8
import random
9
10
import shutil
import sys
RayMeng8's avatar
RayMeng8 committed
11
from collections import deque
Deshui Yu's avatar
Deshui Yu committed
12
13
from unittest import TestCase, main

14
15
16
17
18
19
from nni.batch_tuner.batch_tuner import BatchTuner
from nni.evolution_tuner.evolution_tuner import EvolutionTuner
from nni.gp_tuner.gp_tuner import GPTuner
from nni.gridsearch_tuner.gridsearch_tuner import GridSearchTuner
from nni.hyperopt_tuner.hyperopt_tuner import HyperoptTuner
from nni.metis_tuner.metis_tuner import MetisTuner
RayMeng8's avatar
RayMeng8 committed
20
21
from nni.msg_dispatcher import _pack_parameter, MsgDispatcher
from nni.pbt_tuner.pbt_tuner import PBTTuner
22

23
24
25
26
27
try:
    from nni.smac_tuner.smac_tuner import SMACTuner
except ImportError:
    assert sys.platform == "win32"
from nni.tuner import Tuner
Deshui Yu's avatar
Deshui Yu committed
28

RayMeng8's avatar
RayMeng8 committed
29

30
31
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('test_tuner')
Deshui Yu's avatar
Deshui Yu committed
32
33


34
class BuiltinTunersTestCase(TestCase):
35
36
37
38
39
40
    """
    Targeted at testing functions of built-in tuners, including
        - [ ] load_checkpoint
        - [ ] save_checkpoint
        - [X] update_search_space
        - [X] generate_multiple_parameters
41
        - [X] import_data
42
        - [ ] trial_end
43
        - [x] receive_trial_result
44
45
    """

46
47
48
49
50
    def setUp(self):
        self.test_round = 3
        self.params_each_round = 50
        self.exhaustive = False

RayMeng8's avatar
RayMeng8 committed
51
52
53
54
55
    def send_trial_callback(self, param_queue):
        def receive(*args):
            param_queue.append(tuple(args))
        return receive

56
57
58
59
    def send_trial_result(self, tuner, parameter_id, parameters, metrics):
        tuner.receive_trial_result(parameter_id, parameters, metrics)
        tuner.trial_end(parameter_id, True)

60
61
62
63
64
    def search_space_test_one(self, tuner_factory, search_space):
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)

65
        for i in range(self.test_round):
RayMeng8's avatar
RayMeng8 committed
66
            queue = deque()
67
            parameters = tuner.generate_multiple_parameters(list(range(i * self.params_each_round,
RayMeng8's avatar
RayMeng8 committed
68
69
                                                                       (i + 1) * self.params_each_round)),
                                                            st_callback=self.send_trial_callback(queue))
70
71
72
            logger.debug(parameters)
            self.check_range(parameters, search_space)
            for k in range(min(len(parameters), self.params_each_round)):
73
                self.send_trial_result(tuner, self.params_each_round * i + k, parameters[k], random.uniform(-100, 100))
RayMeng8's avatar
RayMeng8 committed
74
75
76
            while queue:
                id_, params = queue.popleft()
                self.check_range([params], search_space)
77
                self.send_trial_result(tuner, id_, params, random.uniform(-100, 100))
78
79
            if not parameters and not self.exhaustive:
                raise ValueError("No parameters generated")
80
81
82
83
84
85
86

    def check_range(self, generated_params, search_space):
        EPS = 1E-6
        for param in generated_params:
            if self._testMethodName == "test_batch":
                param = {list(search_space.keys())[0]: param}
            for k, v in param.items():
RayMeng8's avatar
RayMeng8 committed
87
88
89
                if k == "load_checkpoint_dir" or k == "save_checkpoint_dir":
                    self.assertIsInstance(v, str)
                    continue
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                if k.startswith("_mutable_layer"):
                    _, block, layer, choice = k.split("/")
                    cand = search_space[block]["_value"][layer].get(choice)
                    # cand could be None, e.g., optional_inputs_chosen_state
                    if choice == "layer_choice":
                        self.assertIn(v, cand)
                    if choice == "optional_input_size":
                        if isinstance(cand, int):
                            self.assertEqual(v, cand)
                        else:
                            self.assertGreaterEqual(v, cand[0])
                            self.assertLessEqual(v, cand[1])
                    if choice == "optional_inputs":
                        pass  # ignore for now
                    continue
                item = search_space[k]
                if item["_type"] == "choice":
                    self.assertIn(v, item["_value"])
                if item["_type"] == "randint":
                    self.assertIsInstance(v, int)
                if item["_type"] == "uniform":
                    self.assertIsInstance(v, float)
                if item["_type"] in ("randint", "uniform", "quniform", "loguniform", "qloguniform"):
                    self.assertGreaterEqual(v, item["_value"][0])
                    self.assertLessEqual(v, item["_value"][1])
                if item["_type"].startswith("q"):
                    multiple = v / item["_value"][2]
                    print(k, v, multiple, item)
                    if item["_value"][0] + EPS < v < item["_value"][1] - EPS:
                        self.assertAlmostEqual(int(round(multiple)), multiple)
                if item["_type"] in ("qlognormal", "lognormal"):
                    self.assertGreaterEqual(v, 0)
                if item["_type"] == "mutable_layer":
                    for layer_name in item["_value"].keys():
                        self.assertIn(v[layer_name]["chosen_layer"], item["layer_choice"])

126
127
    def search_space_test_all(self, tuner_factory, supported_types=None, ignore_types=None, fail_types=None):
        # Three types: 1. supported; 2. ignore; 3. fail.
128
129
130
131
132
133
134
135
136
137
138
        # NOTE(yuge): ignore types
        # Supported types are listed in the table. They are meant to be supported and should be correct.
        # Other than those, all the rest are "unsupported", which are expected to produce ridiculous results
        # or throw some exceptions. However, there are certain types I can't check. For example, generate
        # "normal" using GP Tuner returns successfully and results are fine if we check the range (-inf to +inf),
        # but they make no sense: it's not a normal distribution. So they are ignored in tests for now.
        with open(os.path.join(os.path.dirname(__file__), "assets/search_space.json"), "r") as fp:
            search_space_all = json.load(fp)
        if supported_types is None:
            supported_types = ["choice", "randint", "uniform", "quniform", "loguniform", "qloguniform",
                               "normal", "qnormal", "lognormal", "qlognormal"]
139
140
141
142
        if fail_types is None:
            fail_types = []
        if ignore_types is None:
            ignore_types = []
143
144
145
        full_supported_search_space = dict()
        for single in search_space_all:
            space = search_space_all[single]
146
            if any(single.startswith(t) for t in ignore_types):
147
                continue
148
            expected_fail = not any(single.startswith(t) for t in supported_types) or \
RayMeng8's avatar
RayMeng8 committed
149
150
                any(single.startswith(t) for t in fail_types) or \
                "fail" in single  # name contains fail (fail on all)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            single_search_space = {single: space}
            if not expected_fail:
                # supports this key
                self.search_space_test_one(tuner_factory, single_search_space)
                full_supported_search_space.update(single_search_space)
            else:
                # unsupported key
                with self.assertRaises(Exception, msg="Testing {}".format(single)) as cm:
                    self.search_space_test_one(tuner_factory, single_search_space)
                logger.info("%s %s %s", tuner_factory, single, cm.exception)
        if not any(t in self._testMethodName for t in ["batch", "grid_search"]):
            # grid search fails for too many combinations
            logger.info("Full supported search space: %s", full_supported_search_space)
            self.search_space_test_one(tuner_factory, full_supported_search_space)

QuanluZhang's avatar
QuanluZhang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def import_data_test_for_pbt(self):
        """
        test1: import data with complete epoch
        test2: import data with incomplete epoch
        """
        search_space = {
            "choice_str": {
                "_type": "choice",
                "_value": ["cat", "dog", "elephant", "cow", "sheep", "panda"]
            }
        }
        all_checkpoint_dir = os.path.expanduser("~/nni/checkpoint/test/")
        population_size = 4
        # ===import data at the beginning===
        tuner = PBTTuner(
            all_checkpoint_dir=all_checkpoint_dir,
            population_size=population_size
        )
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        save_dirs = [os.path.join(all_checkpoint_dir, str(i), str(0)) for i in range(population_size)]
        # create save checkpoint directory
        for save_dir in save_dirs:
            os.makedirs(save_dir, exist_ok=True)
        # for simplicity, omit "load_checkpoint_dir"
        data = [{"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[0]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[1]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[2]}, "value": 11},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[3]}, "value": 7}]
        epoch = tuner.import_data(data)
        self.assertEqual(epoch, 1)
        logger.info("Imported data successfully at the beginning")
        shutil.rmtree(all_checkpoint_dir)
        # ===import another data at the beginning, test the case when there is an incompleted epoch===
        tuner = PBTTuner(
            all_checkpoint_dir=all_checkpoint_dir,
            population_size=population_size
        )
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        for i in range(population_size - 1):
            save_dirs.append(os.path.join(all_checkpoint_dir, str(i), str(1)))
        for save_dir in save_dirs:
            os.makedirs(save_dir, exist_ok=True)
        data = [{"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[0]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[1]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[2]}, "value": 11},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[3]}, "value": 7},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[4]}, "value": 1.1},
                {"parameter": {"choice_str": "dog", "save_checkpoint_dir": save_dirs[5]}, "value": {"default": 1.2, "tmp": 2}},
                {"parameter": {"choice_str": "cat", "save_checkpoint_dir": save_dirs[6]}, "value": 11}]
        epoch = tuner.import_data(data)
        self.assertEqual(epoch, 1)
        logger.info("Imported data successfully at the beginning with incomplete epoch")
        shutil.rmtree(all_checkpoint_dir)

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    def import_data_test(self, tuner_factory, stype="choice_str"):
        """
        import data at the beginning with number value and dict value
        import data in the middle also with number value and dict value, and duplicate data record
        generate parameters after data import

        Parameters
        ----------
        tuner_factory : lambda
            a lambda for instantiate a tuner
        stype : str
            the value type of hp choice, support "choice_str" and "choice_num"
        """
        if stype == "choice_str":
            search_space = {
                "choice_str": {
                    "_type": "choice",
                    "_value": ["cat", "dog", "elephant", "cow", "sheep", "panda"]
                }
            }
        elif stype == "choice_num":
            search_space = {
                "choice_num": {
                    "_type": "choice",
                    "_value": [10, 20, 30, 40, 50, 60]
                }
            }
        else:
            raise RuntimeError("Unexpected stype")
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        # import data at the beginning
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}}]
        tuner.import_data(data)
        logger.info("Imported data successfully at the beginning")
        # generate parameters
        parameters = tuner.generate_multiple_parameters(list(range(3)))
        for i in range(3):
            tuner.receive_trial_result(i, parameters[i], random.uniform(-100, 100))
        # import data in the middle
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_str": "cow"}, "value": 1.3}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_num": 50}, "value": 1.3}]
        tuner.import_data(data)
        logger.info("Imported data successfully in the middle")
        # generate parameters again
        parameters = tuner.generate_multiple_parameters([3])
        tuner.receive_trial_result(3, parameters[0], random.uniform(-100, 100))

282
    def test_grid_search(self):
283
        self.exhaustive = True
284
285
        tuner_fn = lambda: GridSearchTuner()
        self.search_space_test_all(tuner_fn,
286
                                   supported_types=["choice", "randint", "quniform"])
287
        self.import_data_test(tuner_fn)
288
289

    def test_tpe(self):
290
291
        tuner_fn = lambda: HyperoptTuner("tpe")
        self.search_space_test_all(tuner_fn,
292
293
                                   ignore_types=["uniform_equal", "qloguniform_equal", "loguniform_equal", "quniform_clip_2"])
        # NOTE: types are ignored because `tpe.py line 465, in adaptive_parzen_normal assert prior_sigma > 0`
294
        self.import_data_test(tuner_fn)
295
296

    def test_random_search(self):
297
298
299
        tuner_fn = lambda: HyperoptTuner("random_search")
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
300
301

    def test_anneal(self):
302
303
304
        tuner_fn = lambda: HyperoptTuner("anneal")
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
305
306
307
308

    def test_smac(self):
        if sys.platform == "win32":
            return  # smac doesn't work on windows
309
310
        tuner_fn = lambda: SMACTuner()
        self.search_space_test_all(tuner_fn,
311
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform"])
312
        self.import_data_test(tuner_fn)
313
314

    def test_batch(self):
315
        self.exhaustive = True
316
317
        tuner_fn = lambda: BatchTuner()
        self.search_space_test_all(tuner_fn,
318
                                   supported_types=["choice"])
319
        self.import_data_test(tuner_fn)
320
321
322

    def test_evolution(self):
        # Needs enough population size, otherwise it will throw a runtime error
323
324
325
        tuner_fn = lambda: EvolutionTuner(population_size=100)
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
326
327

    def test_gp(self):
328
        self.test_round = 1  # NOTE: GP tuner got hanged for multiple testing round
329
330
        tuner_fn = lambda: GPTuner()
        self.search_space_test_all(tuner_fn,
331
332
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform",
                                                    "qloguniform"],
333
334
                                   ignore_types=["normal", "lognormal", "qnormal", "qlognormal"],
                                   fail_types=["choice_str", "choice_mixed"])
335
        self.import_data_test(tuner_fn, "choice_num")
336
337

    def test_metis(self):
338
        self.test_round = 1  # NOTE: Metis tuner got hanged for multiple testing round
339
340
        tuner_fn = lambda: MetisTuner()
        self.search_space_test_all(tuner_fn,
341
342
                                   supported_types=["choice", "randint", "uniform", "quniform"],
                                   fail_types=["choice_str", "choice_mixed"])
343
        self.import_data_test(tuner_fn, "choice_num")
344
345
346
347
348
349
350

    def test_networkmorphism(self):
        pass

    def test_ppo(self):
        pass

RayMeng8's avatar
RayMeng8 committed
351
352
353
354
355
356
357
358
359
    def test_pbt(self):
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=12
        ))
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=100
        ))
QuanluZhang's avatar
QuanluZhang committed
360
        self.import_data_test_for_pbt()
RayMeng8's avatar
RayMeng8 committed
361

362
363
364
365
366
367
368
369
    def tearDown(self):
        file_list = glob.glob("smac3*") + ["param_config_space.pcs", "scenario.txt", "model_path"]
        for file in file_list:
            if os.path.exists(file):
                if os.path.isdir(file):
                    shutil.rmtree(file)
                else:
                    os.remove(file)
Deshui Yu's avatar
Deshui Yu committed
370
371
372
373


if __name__ == '__main__':
    main()