ops.py 5.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import torch
import torch.nn as nn

OPS = {
    'avg_pool_3x3': lambda C, stride, affine: PoolWithoutBN('avg', C, 3, stride, 1, affine=affine),
    'max_pool_3x3': lambda C, stride, affine: PoolWithoutBN('max', C, 3, stride, 1, affine=affine),
    'skip_connect': lambda C, stride, affine: nn.Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
    'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
    'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
    'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
    'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),  # 5x5
    'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),  # 9x9
    'conv_7x1_1x7': lambda C, stride, affine: FacConv(C, C, 7, stride, 3, affine=affine)
}

PRIMITIVES = [
    'max_pool_3x3',
    'avg_pool_3x3',
    'skip_connect',  # identity
    'sep_conv_3x3',
    'sep_conv_5x5',
    'dil_conv_3x3',
    'dil_conv_5x5',
]


class DropPath(nn.Module):
    def __init__(self, p=0.):
        """
        Drop path with probability.

        Parameters
        ----------
        p : float
            Probability of an path to be zeroed.
        """
        super().__init__()
        self.p = p

    def forward(self, x):
        if self.training and self.p > 0.:
            keep_prob = 1. - self.p
            # per data point mask
            mask = torch.zeros((x.size(0), 1, 1, 1), device=x.device).bernoulli_(keep_prob)
            return x / keep_prob * mask

        return x


class PoolWithoutBN(nn.Module):
    """
    AvgPool or MaxPool with BN. `pool_type` must be `max` or `avg`.
    """

    def __init__(self, pool_type, C, kernel_size, stride, padding, affine=True):
        super().__init__()
        if pool_type.lower() == 'max':
            self.pool = nn.MaxPool2d(kernel_size, stride, padding)
        elif pool_type.lower() == 'avg':
            self.pool = nn.AvgPool2d(kernel_size, stride, padding, count_include_pad=False)
        else:
            raise NotImplementedError("Pool doesn't support pooling type other than max and avg.")

    def forward(self, x):
        out = self.pool(x)
        return out


class StdConv(nn.Module):
    """
    Standard conv: ReLU - Conv - BN
    """

    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_out, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class FacConv(nn.Module):
    """
    Factorized conv: ReLU - Conv(Kx1) - Conv(1xK) - BN
    """

    def __init__(self, C_in, C_out, kernel_length, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, (kernel_length, 1), stride, padding, bias=False),
            nn.Conv2d(C_in, C_out, (1, kernel_length), stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class DilConv(nn.Module):
    """
    (Dilated) depthwise separable conv.
    ReLU - (Dilated) depthwise separable - Pointwise - BN.
    If dilation == 2, 3x3 conv => 5x5 receptive field, 5x5 conv => 9x9 receptive field.
    """

    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in,
                      bias=False),
            nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class SepConv(nn.Module):
    """
    Depthwise separable conv.
    DilConv(dilation=1) * 2.
    """

    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            DilConv(C_in, C_in, kernel_size, stride, padding, dilation=1, affine=affine),
            DilConv(C_in, C_out, kernel_size, 1, padding, dilation=1, affine=affine)
        )

    def forward(self, x):
        return self.net(x)


class FactorizedReduce(nn.Module):
    """
    Reduce feature map size by factorized pointwise (stride=2).
    """

    def __init__(self, C_in, C_out, affine=True):
        super().__init__()
        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(C_out, affine=affine)

    def forward(self, x):
        x = self.relu(x)
        out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1)
        out = self.bn(out)
        return out