parse_result_csv.py 7.41 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import pandas as pd
import sys
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D


def generate_perf_report(result_file_name):
    """
    Generate a performance report. 
    The input result_file_name should be the path of the "results.csv" generated by automlbenchmark.
    This function outputs 1) a formatted report named "performances.txt" in the "reports/" directory 
    located in the same parent directory as "results.csv" and 2) a report named "rankings.txt" in the
    same directory ranking the tuners contained in "results.csv". 
    """
    result = pd.read_csv(result_file_name)
    task_ids = result['id'].unique()
    tuners = result['framework'].unique()
    metric_types = ['rmse', 'auc', 'logloss']
    metric2taskres = {}
    for m in metric_types:
        metric2taskres[m] = []
    keep_parameters = ['framework', 'constraint', 'result', 'metric', 'params', 'utc', 'duration'] + list(result.columns[16:])    

    # performance report: one table per task
    with open(result_file_name.replace('results.csv', 'reports/performances.txt'), 'w') as out_f:
        for task_id in task_ids:
            task_results = result[result['id'] == task_id]
            task_name = task_results.task.unique()[0]
            out_f.write("====================================================\n")
            out_f.write("Task ID: {}\n".format(task_id))
            out_f.write("Task Name: {}\n".format(task_name))
            folds = task_results['fold'].unique()
            for fold in folds:
                out_f.write("Fold {}:\n".format(fold))
                res = task_results[task_results['fold'] == fold][keep_parameters]
                out_f.write(res.to_string())
                out_f.write('\n')
                # save results for the next step
                res_list = []
                for _, row in res.iterrows():
                    res_list.append([row['framework'], row['result']])
                metric2taskres[res['metric'].unique()[0]].append(res_list)
            out_f.write('\n')

    # rankings report: per task and per tuner    
    with open(result_file_name.replace('results.csv', 'reports/rankings.txt'), 'w') as out_f:
        # generate reports per task
        ranking_aggs = {}
        for metric_type in metric_types:
            sorted_lists = []
            if metric_type in ['auc']:
                for l in metric2taskres[metric_type]:
                    l_sorted = sorted(l, key=(lambda x: x[-1]), reverse=True)
                    l_sorted = [[x[0], x[1], i+1] for (i, x) in enumerate(l_sorted)]
                    sorted_lists.append(l_sorted)
            elif metric_type in ['rmse', 'logloss']:
                for l in metric2taskres[metric_type]:
                    l_sorted = sorted(l, key=(lambda x: x[-1]))
                    l_sorted = [[x[0], x[1], i+1] for (i, x) in enumerate(l_sorted)]
                    sorted_lists.append(l_sorted)
            metric2taskres[metric_type] = sorted_lists

            out_f.write("====================================================\n")
            out_f.write("Average rankings for metric {}:\n".format(metric_type))
            ranking_agg = [[t, 0] for t in tuners]
            for i, tuner in enumerate(tuners):
                for trial_res in metric2taskres[metric_type]:
                    for t, s, r in trial_res:
                        if t == tuner:
                            ranking_agg[i][-1] += r

            ranking_agg = [[x[0], x[1]/float(len(metric2taskres[metric_type]))] for x in ranking_agg]
            ranking_agg = sorted(ranking_agg, key=(lambda x: x[-1]))
            for t, r in ranking_agg:
                out_f.write('{:<12} {:.2f}\n'.format(t, r))
            ranking_aggs[metric_type] = ranking_agg
            out_f.write('\n') 

        # generate reports per tuner
        out_f.write("====================================================\n")
        out_f.write("Average rankings for tuners:\n")
        header_string = '{:<12}'
        for _ in metric_types:
            header_string += ' {:<12}'
        header_string += '\n'
        out_f.write(header_string.format("Tuner", *metric_types))    
        for tuner in tuners:
            tuner_ranks = []
            for m in metric_types:
                for t, r in ranking_aggs[m]:
                    if t == tuner:
                        tuner_ranks.append('{:.2f}'.format(r))
                        break
            out_f.write(header_string.format(tuner, *tuner_ranks))
        out_f.write('\n')


def generate_graphs(result_file_name):
    """
    Generate graphs describing performance statistics.
    The input result_file_name should be the path of the "results.csv" generated by automlbenchmark.
    For each task, this function outputs two graphs in the "reports/" directory located in the same 
    parent directory as "results.csv".
    The graph named task_foldx_1.jpg summarizes the best score each tuner gets after n trials. 
    The graph named task_foldx_2.jpg summarizes the score each tuner gets in each trial. 
    """
    markers = list(Line2D.markers.keys())
    result = pd.read_csv(result_file_name)
    scorelog_dir = result_file_name.replace('results.csv', 'scorelogs/')
    output_dir = result_file_name.replace('results.csv', 'reports/') 
    task_ids = result['id'].unique()
    for task_id in task_ids:
        task_results = result[result['id'] == task_id]
        task_name = task_results.task.unique()[0]
        folds = task_results['fold'].unique()        

        for fold in folds:            
            # load scorelog files
            trial_scores, best_scores = [], []
            tuners = list(task_results[task_results.fold == fold]['framework'].unique())
            for tuner in tuners:
                scorelog_name = '{}_{}_{}.csv'.format(tuner.lower(), task_name, fold)
                intermediate_scores = pd.read_csv(scorelog_dir + scorelog_name)
                bs = list(intermediate_scores['best_score'])
                ts = [(i+1, x) for i, x in enumerate(list(intermediate_scores['trial_score'])) if x != 0]
                best_scores.append([tuner, bs])
                trial_scores.append([tuner, ts])

            # generate the best score graph
            plt.figure(figsize=(16, 8))
            for i, (tuner, score) in enumerate(best_scores):
                plt.plot(score, label=tuner, marker=markers[i])
            plt.title('{} Fold {}'.format(task_name, fold))
            plt.xlabel("Number of Trials")
            plt.ylabel("Best Score")        
            plt.legend()
            plt.savefig(output_dir + '{}_fold{}_1.jpg'.format(task_name, fold))
            plt.close()

            # generate the trial score graph
            plt.figure(figsize=(16, 8))
            for i, (tuner, score) in enumerate(trial_scores):
                x = [l[0] for l in score]
                y = [l[1] for l in score] 
                plt.plot(x, y, label=tuner)      #, marker=markers[i])
            plt.title('{} Fold {}'.format(task_name, fold))
            plt.xlabel("Trial Number")
            plt.ylabel("Trial Score")        
            plt.legend()
            plt.savefig(output_dir + '{}_fold{}_2.jpg'.format(task_name, fold))
            plt.close()

            
def main():
    if len(sys.argv) != 2:
        print("Usage: python parse_result_csv.py <result.csv file>")
        exit(0)
    generate_perf_report(sys.argv[1])
    generate_graphs(sys.argv[1])
    

if __name__ == '__main__':
    main()