mnist.py 5.93 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
3
4
5
6
7
"""
A deep MNIST classifier using convolutional layers.

This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""

chicm-ms's avatar
chicm-ms committed
8
import os
Guoxin's avatar
Guoxin committed
9
10
11
12
13
14
15
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
16
from nni.utils import merge_parameter
Guoxin's avatar
Guoxin committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from torchvision import datasets, transforms

logger = logging.getLogger('mnist_AutoML')


class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, hidden_size)
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
chicm-ms's avatar
chicm-ms committed
44
45
        if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
            break
Guoxin's avatar
Guoxin committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args['log_interval'] == 0:
            logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    accuracy = 100. * correct / len(test_loader.dataset)

    logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset), accuracy))

    return accuracy


def main(args):
    use_cuda = not args['no_cuda'] and torch.cuda.is_available()

    torch.manual_seed(args['seed'])

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
chicm-ms's avatar
chicm-ms committed
90

91
    data_dir = args['data_dir']
chicm-ms's avatar
chicm-ms committed
92

Guoxin's avatar
Guoxin committed
93
    train_loader = torch.utils.data.DataLoader(
chicm-ms's avatar
chicm-ms committed
94
        datasets.MNIST(data_dir, train=True, download=True,
Guoxin's avatar
Guoxin committed
95
96
97
98
99
100
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args['batch_size'], shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
chicm-ms's avatar
chicm-ms committed
101
        datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=1000, shuffle=True, **kwargs)

    hidden_size = args['hidden_size']

    model = Net(hidden_size=hidden_size).to(device)
    optimizer = optim.SGD(model.parameters(), lr=args['lr'],
                          momentum=args['momentum'])

    for epoch in range(1, args['epochs'] + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test_acc = test(args, model, device, test_loader)

chicm-ms's avatar
chicm-ms committed
117
118
119
120
121
122
123
124
125
        # report intermediate result
        nni.report_intermediate_result(test_acc)
        logger.debug('test accuracy %g', test_acc)
        logger.debug('Pipe send intermediate result done.')

    # report final result
    nni.report_final_result(test_acc)
    logger.debug('Final result is %g', test_acc)
    logger.debug('Send final result done.')
Guoxin's avatar
Guoxin committed
126
127
128
129
130
131


def get_params():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument("--data_dir", type=str,
132
                        default='./data', help="data directory")
Guoxin's avatar
Guoxin committed
133
134
    parser.add_argument('--batch_size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
chicm-ms's avatar
chicm-ms committed
135
    parser.add_argument("--batch_num", type=int, default=None)
Guoxin's avatar
Guoxin committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
                        help='hidden layer size (default: 512)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--no_cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
                        help='how many batches to wait before logging training status')


    args, _ = parser.parse_known_args()
    return args


if __name__ == '__main__':
    try:
        # get parameters form tuner
        tuner_params = nni.get_next_parameter()
        logger.debug(tuner_params)
161
        params = vars(merge_parameter(get_params(), tuner_params))
chicm-ms's avatar
chicm-ms committed
162
        print(params)
Guoxin's avatar
Guoxin committed
163
164
165
166
        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise