v2_pruning_algo.rst 15.1 KB
Newer Older
J-shang's avatar
J-shang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
Supported Pruning Algorithms in NNI
===================================

NNI provides several pruning algorithms that reproducing from the papers. In pruning v2, NNI split the pruning algorithm into more detailed components.
This means users can freely combine components from different algorithms,
or easily use a component of their own implementation to replace a step in the original algorithm to implement their own pruning algorithm.

Right now, pruning algorithms with how to generate masks in one step are implemented as pruners,
and how to schedule sparsity in each iteration are implemented as iterative pruners.

**Pruner**

* `Level Pruner <#level-pruner>`__
* `L1 Norm Pruner <#l1-norm-pruner>`__
* `L2 Norm Pruner <#l2-norm-pruner>`__
* `FPGM Pruner <#fpgm-pruner>`__
* `Slim Pruner <#slim-pruner>`__
* `Activation APoZ Rank Pruner <#activation-apoz-rank-pruner>`__
* `Activation Mean Rank Pruner <#activation-mean-rank-pruner>`__
* `Taylor FO Weight Pruner <#taylor-fo-weight-pruner>`__
* `ADMM Pruner <#admm-pruner>`__

**Iterative Pruner**

* `Linear Pruner <#linear-pruner>`__
* `AGP Pruner <#agp-pruner>`__
* `Lottery Ticket Pruner <#lottery-ticket-pruner>`__
* `Simulated Annealing Pruner <#simulated-annealing-pruner>`__

Level Pruner
------------

This is a basic pruner, and in some papers called it magnitude pruning or fine-grained pruning.

It will mask the weight in each specified layer with smaller absolute value by a ratio configured in the config list.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import LevelPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }]
   pruner = LevelPruner(model, config_list)
   masked_model, masks = pruner.compress()

User configuration for Level Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.LevelPruner

L1 Norm Pruner
--------------

L1 norm pruner computes the l1 norm of the layer weight on the first dimension,
then prune the weight blocks on this dimension with smaller l1 norm values.
i.e., compute the l1 norm of the filters in convolution layer as metric values,
compute the l1 norm of the weight by rows in linear layer as metric values.

For more details, please refer to `PRUNING FILTERS FOR EFFICIENT CONVNETS <https://arxiv.org/abs/1608.08710>`__\.

In addition, L1 norm pruner also supports dependency-aware mode.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = L1NormPruner(model, config_list)
   masked_model, masks = pruner.compress()

User configuration for L1 Norm Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.L1NormPruner

L2 Norm Pruner
--------------

L2 norm pruner is a variant of L1 norm pruner. It uses l2 norm as metric to determine which weight elements should be pruned.

L2 norm pruner also supports dependency-aware mode.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import L2NormPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = L2NormPruner(model, config_list)
   masked_model, masks = pruner.compress()

User configuration for L2 Norm Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.L2NormPruner

FPGM Pruner
-----------

FPGM pruner prunes the blocks of the weight on the first dimension with the smallest geometric median.
FPGM chooses the weight blocks with the most replaceable contribution.

For more details, please refer to `Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration <https://arxiv.org/abs/1811.00250>`__.

FPGM pruner also supports dependency-aware mode.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import FPGMPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = FPGMPruner(model, config_list)
   masked_model, masks = pruner.compress()

User configuration for FPGM Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.FPGMPruner

Slim Pruner
-----------

Slim pruner adds sparsity regularization on the scaling factors of batch normalization (BN) layers during training to identify unimportant channels.
The channels with small scaling factor values will be pruned.

For more details, please refer to `Learning Efficient Convolutional Networks through Network Slimming <https://arxiv.org/abs/1708.06519>`__\.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import SlimPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['BatchNorm2d'] }]
   pruner = SlimPruner(model, config_list, trainer, optimizer, criterion, training_epochs=1)
   masked_model, masks = pruner.compress()

User configuration for Slim Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.SlimPruner

Activation APoZ Rank Pruner
---------------------------

Activation APoZ rank pruner is a pruner which prunes on the first weight dimension,
with the smallest importance criterion ``APoZ`` calculated from the output activations of convolution layers to achieve a preset level of network sparsity.
The pruning criterion ``APoZ`` is explained in the paper `Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures <https://arxiv.org/abs/1607.03250>`__.

The APoZ is defined as:

:math:`APoZ_{c}^{(i)} = APoZ\left(O_{c}^{(i)}\right)=\frac{\sum_{k}^{N} \sum_{j}^{M} f\left(O_{c, j}^{(i)}(k)=0\right)}{N \times M}`

Activation APoZ rank pruner also supports dependency-aware mode.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import ActivationAPoZRankPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = ActivationAPoZRankPruner(model, config_list, trainer, optimizer, criterion, training_batches=20)
   masked_model, masks = pruner.compress()

User configuration for Activation APoZ Rank Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.ActivationAPoZRankPruner

Activation Mean Rank Pruner
---------------------------

Activation mean rank pruner is a pruner which prunes on the first weight dimension,
with the smallest importance criterion ``mean activation`` calculated from the output activations of convolution layers to achieve a preset level of network sparsity.
The pruning criterion ``mean activation`` is explained in section 2.2 of the paper `Pruning Convolutional Neural Networks for Resource Efficient Inference <https://arxiv.org/abs/1611.06440>`__.

Activation mean rank pruner also supports dependency-aware mode.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import ActivationMeanRankPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = ActivationMeanRankPruner(model, config_list, trainer, optimizer, criterion, training_batches=20)
   masked_model, masks = pruner.compress()

User configuration for Activation Mean Rank Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.ActivationMeanRankPruner

Taylor FO Weight Pruner
-----------------------

Taylor FO weight pruner is a pruner which prunes on the first weight dimension,
based on estimated importance calculated from the first order taylor expansion on weights to achieve a preset level of network sparsity.
The estimated importance is defined as the paper `Importance Estimation for Neural Network Pruning <http://jankautz.com/publications/Importance4NNPruning_CVPR19.pdf>`__.

:math:`\widehat{\mathcal{I}}_{\mathcal{S}}^{(1)}(\mathbf{W}) \triangleq \sum_{s \in \mathcal{S}} \mathcal{I}_{s}^{(1)}(\mathbf{W})=\sum_{s \in \mathcal{S}}\left(g_{s} w_{s}\right)^{2}`

Taylor FO weight pruner also supports dependency-aware mode.

What's more, we provide a global-sort mode for this pruner which is aligned with paper implementation.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import TaylorFOWeightPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = TaylorFOWeightPruner(model, config_list, trainer, optimizer, criterion, training_batches=20)
   masked_model, masks = pruner.compress()

User configuration for Activation Mean Rank Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.TaylorFOWeightPruner

ADMM Pruner
-----------

Alternating Direction Method of Multipliers (ADMM) is a mathematical optimization technique,
by decomposing the original nonconvex problem into two subproblems that can be solved iteratively.
In weight pruning problem, these two subproblems are solved via 1) gradient descent algorithm and 2) Euclidean projection respectively. 

During the process of solving these two subproblems, the weights of the original model will be changed.
Then a fine-grained pruning will be applied to prune the model according to the config list given.

This solution framework applies both to non-structured and different variations of structured pruning schemes.

For more details, please refer to `A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers <https://arxiv.org/abs/1804.03294>`__.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import ADMMPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = ADMMPruner(model, config_list, trainer, optimizer, criterion, iterations=10, training_epochs=1)
   masked_model, masks = pruner.compress()

User configuration for ADMM Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.ADMMPruner

Linear Pruner
-------------

Linear pruner is an iterative pruner, it will increase sparsity evenly from scratch during each iteration.
For example, the final sparsity is set as 0.5, and the iteration number is 5, then the sparsity used in each iteration are ``[0, 0.1, 0.2, 0.3, 0.4, 0.5]``.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import LinearPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = LinearPruner(model, config_list, pruning_algorithm='l1', total_iteration=10, finetuner=finetuner)
   pruner.compress()
   _, model, masks, _, _ = pruner.get_best_result()

User configuration for Linear Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.LinearPruner

AGP Pruner
----------

This is an iterative pruner, which the sparsity is increased from an initial sparsity value :math:`s_{i}` (usually 0) to a final sparsity value :math:`s_{f}` over a span of :math:`n` pruning iterations,
starting at training step :math:`t_{0}` and with pruning frequency :math:`\Delta t`:

:math:`s_{t}=s_{f}+\left(s_{i}-s_{f}\right)\left(1-\frac{t-t_{0}}{n \Delta t}\right)^{3} \text { for } t \in\left\{t_{0}, t_{0}+\Delta t, \ldots, t_{0} + n \Delta t\right\}`

For more details please refer to `To prune, or not to prune: exploring the efficacy of pruning for model compression <https://arxiv.org/abs/1710.01878>`__\.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import AGPPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = AGPPruner(model, config_list, pruning_algorithm='l1', total_iteration=10, finetuner=finetuner)
   pruner.compress()
   _, model, masks, _, _ = pruner.get_best_result()

User configuration for AGP Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.AGPPruner

Lottery Ticket Pruner
---------------------

`The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks <https://arxiv.org/abs/1803.03635>`__\ ,
authors Jonathan Frankle and Michael Carbin,provides comprehensive measurement and analysis,
and articulate the *lottery ticket hypothesis*\ : dense, randomly-initialized, feed-forward networks contain subnetworks (*winning tickets*\ ) that
-- when trained in isolation -- reach test accuracy comparable to the original network in a similar number of iterations.

In this paper, the authors use the following process to prune a model, called *iterative prunning*\ :

..

   #. Randomly initialize a neural network f(x;theta_0) (where theta\ *0 follows D*\ {theta}).
   #. Train the network for j iterations, arriving at parameters theta_j.
   #. Prune p% of the parameters in theta_j, creating a mask m.
   #. Reset the remaining parameters to their values in theta_0, creating the winning ticket f(x;m*theta_0).
   #. Repeat step 2, 3, and 4.

If the configured final sparsity is P (e.g., 0.8) and there are n times iterative pruning,
each iterative pruning prunes 1-(1-P)^(1/n) of the weights that survive the previous round.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import LotteryTicketPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = LotteryTicketPruner(model, config_list, pruning_algorithm='l1', total_iteration=10, finetuner=finetuner, reset_weight=True)
   pruner.compress()
   _, model, masks, _, _ = pruner.get_best_result()

User configuration for Lottery Ticket Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.LotteryTicketPruner

Simulated Annealing Pruner
--------------------------

We implement a guided heuristic search method, Simulated Annealing (SA) algorithm. As mentioned in the paper, this method is enhanced on guided search based on prior experience.
The enhanced SA technique is based on the observation that a DNN layer with more number of weights often has a higher degree of model compression with less impact on overall accuracy.

* Randomly initialize a pruning rate distribution (sparsities).
* While current_temperature < stop_temperature:

  #. generate a perturbation to current distribution
  #. Perform fast evaluation on the perturbated distribution
  #. accept the perturbation according to the performance and probability, if not accepted, return to step 1
  #. cool down, current_temperature <- current_temperature * cool_down_rate

For more details, please refer to `AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates <https://arxiv.org/abs/1907.03141>`__.

Usage
^^^^^^

.. code-block:: python

   from nni.algorithms.compression.v2.pytorch.pruning import SimulatedAnnealingPruner
   config_list = [{ 'sparsity': 0.8, 'op_types': ['Conv2d'] }]
   pruner = SimulatedAnnealingPruner(model, config_list, pruning_algorithm='l1', cool_down_rate=0.9, finetuner=finetuner)
   pruner.compress()
   _, model, masks, _, _ = pruner.get_best_result()

User configuration for Simulated Annealing Pruner
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

**PyTorch**

.. autoclass:: nni.algorithms.compression.v2.pytorch.pruning.SimulatedAnnealingPruner