mnist.py 5.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
'''
mnist.py is an example to show: how to use iterative search space to tune architecture network for mnist.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import codecs
import json
import logging
import math
import sys
import tempfile
import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

import nni


logger = logging.getLogger('mnist_cascading_search_space')
FLAGS = None

class MnistNetwork(object):
    def __init__(self, params, feature_size = 784):
        config = []

        for i in range(10):
            config.append(params['layer'+str(i)])
        self.config = config
        self.feature_size = feature_size
        self.label_size = 10


    def is_expand_dim(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape < 4:
            return True
        return False


    def is_flatten(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape > 2:
            return True
        return False


    def get_layer(self, layer_config, input, in_height, in_width, id):
        if layer_config[0] == 'Empty':
            return input

        if self.is_expand_dim(input):
            input = tf.reshape(input, [-1, in_height, in_width, 1])
        h, w = layer_config[1], layer_config[2]

        if layer_config[0] == 'Conv':
            conv_filter = tf.Variable(tf.random_uniform([h, w, 1, 1]), name='id_%d_conv_%d_%d' % (id, h, w))
            return tf.nn.conv2d(input, filter=conv_filter, strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Max_pool':
            return tf.nn.max_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Avg_pool':
            return tf.nn.avg_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')

        print('error:', layer_config)
        raise Exception('%s layer is illegal'%layer_config[0])


    def build_network(self):
        layer_configs = self.config
        feature_size = 784

        # define placeholder
        self.x = tf.placeholder(tf.float32, [None, feature_size], name="input_x")
        self.y = tf.placeholder(tf.int32, [None, self.label_size], name="input_y")
        label_number = 10

        # define network
        input_layer = self.x
        in_height = in_width = int(math.sqrt(feature_size))
        for i, layer_config in enumerate(layer_configs):
            input_layer = tf.nn.relu(self.get_layer(layer_config, input_layer, in_height, in_width, i))

        output_layer = input_layer
        if self.is_flatten(output_layer):
            output_layer = tf.contrib.layers.flatten(output_layer)  # flatten
        output_layer = tf.layers.dense(output_layer, label_number)
        child_logit = tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=self.y)
        child_loss = tf.reduce_mean(child_logit)

        self.train_step = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(child_loss)
        child_accuracy = tf.equal(tf.argmax(output_layer, 1), tf.argmax(self.y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(child_accuracy, "float"))  # add a reduce_mean

def main(params):
    # Import data
    mnist = input_data.read_data_sets(params['data_dir'], one_hot=True)
    
    # Create the model
    # Build the graph for the deep net
    mnist_network = MnistNetwork(params)
    mnist_network.build_network()
    print('build network done.')

    # Write log
    graph_location = tempfile.mkdtemp()
    #print('Saving graph to: %s' % graph_location)
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())

    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(params['batch_num']):
            batch = mnist.train.next_batch(params['batch_size'])
            mnist_network.train_step.run(feed_dict={mnist_network.x: batch[0], mnist_network.y: batch[1]})
        
            if i % 100 == 0:
                train_accuracy = mnist_network.accuracy.eval(feed_dict={
                    mnist_network.x: batch[0], mnist_network.y: batch[1]})
                print('step %d, training accuracy %g' % (i, train_accuracy))
        
        test_acc = mnist_network.accuracy.eval(feed_dict={
            mnist_network.x: mnist.test.images, mnist_network.y: mnist.test.labels})
        
        nni.report_final_result(test_acc)

def generate_defualt_params():
    params = {'data_dir': '/tmp/tensorflow/mnist/input_data',
              'batch_num': 1000,
              'batch_size': 200}
    return params


def parse_init_json(data):
    params = {}
    for key in data:
        value = data[key]
        if value == 'Empty':
            params[key] = ['Empty']
        else:
            params[key] = [value[0], value[1]['_value'], value[1]['_value']]
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
chicm-ms's avatar
chicm-ms committed
152
        data = nni.get_next_parameter()
153
154
155
156
157
158
159
160
161
162
163
164
        logger.debug(data)

        RCV_PARAMS = parse_init_json(data)
        logger.debug(RCV_PARAMS)
        params = generate_defualt_params()
        params.update(RCV_PARAMS)
        print(RCV_PARAMS)

        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise