test_oneshot.py 9.77 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
import pytest
from torchvision import transforms
from torchvision.datasets import MNIST
8
from torch.utils.data import Dataset, RandomSampler
9

10
11
import nni.retiarii.nn.pytorch as nn
from nni.retiarii import strategy, model_wrapper, basic_unit
12
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
13
14
from nni.retiarii.evaluator.pytorch.lightning import Classification, Regression, DataLoader
from nni.retiarii.nn.pytorch import LayerChoice, InputChoice, ValueChoice
Yuge Zhang's avatar
Yuge Zhang committed
15
from nni.retiarii.strategy import BaseStrategy
16
17
18
19
20
21
22
23
24
25
26
27


class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


28
@model_wrapper
29
30
class SimpleNet(nn.Module):
    def __init__(self, value_choice=True):
31
32
33
34
35
36
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
37
38
39
40
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
41
        ])
42
43
44
45
46
47
48
        self.dropout2 = nn.Dropout(0.5)
        if value_choice:
            hidden = nn.ValueChoice([32, 64, 128])
        else:
            hidden = 64
        self.fc1 = nn.Linear(9216, hidden)
        self.fc2 = nn.Linear(hidden, 10)
49
        self.rpfc = nn.Linear(10, 10)
50
        self.input_ch = InputChoice(2, 1)
51
52
53
54

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(self.conv2(x), 2)
55
56
57
58
59
60
61
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        x1 = self.rpfc(x)
        x = self.input_ch([x, x1])
62
63
64
65
        output = F.log_softmax(x, dim=1)
        return output


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
@model_wrapper
class MultiHeadAttentionNet(nn.Module):
    def __init__(self, head_count):
        super().__init__()
        embed_dim = ValueChoice(candidates=[32, 64])
        self.linear1 = nn.Linear(128, embed_dim)
        self.mhatt = nn.MultiheadAttention(embed_dim, head_count)
        self.linear2 = nn.Linear(embed_dim, 1)

    def forward(self, batch):
        query, key, value = batch
        q, k, v = self.linear1(query), self.linear1(key), self.linear1(value)
        output, _ = self.mhatt(q, k, v, need_weights=False)
        y = self.linear2(output)
        return F.relu(y)


@model_wrapper
class ValueChoiceConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


@model_wrapper
class RepeatNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)
        self.rpfc = nn.Repeat(nn.Linear(10, 10), (1, 4))

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        x = self.rpfc(x)
        return F.log_softmax(x, dim=1)


@basic_unit
class MyOp(nn.Module):
    def __init__(self, some_ch):
        super().__init__()
        self.some_ch = some_ch
        self.batch_norm = nn.BatchNorm2d(some_ch)

    def forward(self, x):
        return self.batch_norm(x)


@model_wrapper
class CustomOpValueChoiceNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = MyOp(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


def _mnist_net(type_):
    if type_ == 'simple':
        base_model = SimpleNet(False)
    elif type_ == 'simple_value_choice':
        base_model = SimpleNet()
    elif type_ == 'value_choice':
        base_model = ValueChoiceConvNet()
    elif type_ == 'repeat':
        base_model = RepeatNet()
    elif type_ == 'custom_op':
        base_model = CustomOpValueChoiceNet()
    else:
        raise ValueError(f'Unsupported type: {type_}')
    
188
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    train_dataset = MNIST('data/mnist', train=True, download=True, transform=transform)
    train_random_sampler = RandomSampler(train_dataset, True, int(len(train_dataset) / 20))
    train_loader = DataLoader(train_dataset, 64, sampler=train_random_sampler)
    valid_dataset = MNIST('data/mnist', train=False, download=True, transform=transform)
    valid_random_sampler = RandomSampler(valid_dataset, True, int(len(valid_dataset) / 20))
    valid_loader = DataLoader(valid_dataset, 64, sampler=valid_random_sampler)
    evaluator = Classification(train_dataloader=train_loader, val_dataloaders=valid_loader, max_epochs=1)

    return base_model, evaluator


def _multihead_attention_net():
    base_model = MultiHeadAttentionNet(1)

    class AttentionRandDataset(Dataset):
        def __init__(self, data_shape, gt_shape, len) -> None:
            super().__init__()
            self.datashape = data_shape
            self.gtshape = gt_shape
            self.len = len

        def __getitem__(self, index):
            q = torch.rand(self.datashape)
            k = torch.rand(self.datashape)
            v = torch.rand(self.datashape)
            gt = torch.rand(self.gtshape)
            return (q, k, v), gt

        def __len__(self):
            return self.len
219

220
221
222
223
    train_set = AttentionRandDataset((1, 128), (1, 1), 1000)
    val_set = AttentionRandDataset((1, 128), (1, 1), 500)
    train_loader = DataLoader(train_set, batch_size=32)
    val_loader = DataLoader(val_set, batch_size=32)
224

225
226
    evaluator = Regression(train_dataloader=train_loader, val_dataloaders=val_loader, max_epochs=1)
    return base_model, evaluator
227
228


229
230
231
232
233
234
235
236
237
238
def _test_strategy(strategy_, support_value_choice=True):
    to_test = [
        # (model, evaluator), support_or_net
        (_mnist_net('simple'), True),
        (_mnist_net('simple_value_choice'), support_value_choice),
        (_mnist_net('value_choice'), support_value_choice),
        (_mnist_net('repeat'), False),      # no strategy supports repeat currently
        (_mnist_net('custom_op'), False),   # this is definitely a NO
        (_multihead_attention_net(), support_value_choice),
    ]
239

240
    for (base_model, evaluator), support_or_not in to_test:
Yuge Zhang's avatar
Yuge Zhang committed
241
242
243
244
245
246
        if isinstance(strategy_, BaseStrategy):
            strategy = strategy_
        else:
            strategy = strategy_(base_model, evaluator)
        print('Testing:', type(strategy).__name__, type(base_model).__name__, type(evaluator).__name__, support_or_not)
        experiment = RetiariiExperiment(base_model, evaluator, strategy=strategy)
247

248
249
        config = RetiariiExeConfig()
        config.execution_engine = 'oneshot'
250

251
252
253
254
255
256
        if support_or_not:
            experiment.run(config)
            assert isinstance(experiment.export_top_models()[0], dict)
        else:
            with pytest.raises(TypeError, match='not supported'):
                experiment.run(config)
257
258


259
@pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')
260
def test_darts():
261
    _test_strategy(strategy.DARTS())
262
263


264
@pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')
265
def test_proxyless():
266
    _test_strategy(strategy.Proxyless(), False)
267
268


269
@pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')
270
def test_enas():
Yuge Zhang's avatar
Yuge Zhang committed
271
272
273
274
275
276
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn)
277
278


279
@pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')
280
def test_random():
281
    _test_strategy(strategy.RandomOneShot())
282
283


284
285
286
@pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')
def test_gumbel_darts():
    _test_strategy(strategy.GumbelDARTS())
287
288
289
290
291


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--exp', type=str, default='all', metavar='E',
292
                        help='experiment to run, default = all')
293
294
295
296
297
298
299
    args = parser.parse_args()

    if args.exp == 'all':
        test_darts()
        test_proxyless()
        test_enas()
        test_random()
300
        test_gumbel_darts()
301
302
    else:
        globals()[f'test_{args.exp}']()