kubeflowTrainingService.ts 23.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/**
 * Copyright (c) Microsoft Corporation
 * All rights reserved.
 *
 * MIT License
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
 * documentation files (the "Software"), to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
 * to permit persons to whom the Software is furnished to do so, subject to the following conditions:
 * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

'use strict'

import * as assert from 'assert';
import * as component from '../../../common/component';
import * as cpp from 'child-process-promise';
import * as fs from 'fs';
import * as path from 'path';

import { CONTAINER_INSTALL_NNI_SHELL_FORMAT } from '../../common/containerJobData';
import { getExperimentId } from '../../../common/experimentStartupInfo';
import { TrialConfigMetadataKey } from '../../common/trialConfigMetadataKey';
import {
    JobApplicationForm, TrialJobApplicationForm,
    TrialJobDetail, NNIManagerIpConfig
} from '../../../common/trainingService';
import { delay, generateParamFileName, getExperimentRootDir, uniqueString } from '../../../common/utils';
import { KubeflowClusterConfigNFS, KubeflowClusterConfigAzure,
     KubeflowTrialConfigPytorch, KubeflowTrialConfigTensorflow, KubeflowClusterConfigFactory, KubeflowTrialConfigFactory,
     KubeflowTrialConfig, KubeflowClusterConfig } from './kubeflowConfig';
import { NFSConfig } from '../kubernetesConfig'
import { KubernetesTrialJobDetail } from '../kubernetesData';
import { KubeflowJobRestServer } from './kubeflowJobRestServer';
import { validateCodeDir } from '../../common/util';
import { AzureStorageClientUtility } from '../azureStorageClientUtils';
import { KubeflowOperatorClient } from './kubeflowApiClient';
import { KubernetesTrainingService } from '../kubernetesTrainingService'
import { KubeflowJobInfoCollector } from './kubeflowJobInfoCollector';


/**
 * Training Service implementation for Kubeflow
 * Refer https://github.com/kubeflow/kubeflow for more info about Kubeflow
 */
@component.Singleton
class KubeflowTrainingService extends KubernetesTrainingService implements KubernetesTrainingService {
    private kubeflowClusterConfig?: KubeflowClusterConfig;
    private kubeflowTrialConfig?: KubeflowTrialConfig;
    private kubeflowJobInfoCollector: KubeflowJobInfoCollector;

    constructor() {
        super();  
        this.kubeflowJobInfoCollector = new KubeflowJobInfoCollector(this.trialJobsMap);
        this.experimentId = getExperimentId();      
        this.nextTrialSequenceId = -1;
chicm-ms's avatar
chicm-ms committed
64
        this.log.info('Construct Kubeflow training service.');
65
66
67
    }

    public async run(): Promise<void> {
chicm-ms's avatar
chicm-ms committed
68
        this.log.info('Run Kubeflow training service.');
69
70
71
72
73
74
75
76
77
78
79
        this.kubernetesJobRestServer = component.get(KubeflowJobRestServer);
        if(!this.kubernetesJobRestServer) {
            throw new Error('kubernetesJobRestServer not initialized!');
        }
        await this.kubernetesJobRestServer.start();
        this.log.info(`Kubeflow Training service rest server listening on: ${this.kubernetesJobRestServer.endPoint}`);
        while (!this.stopping) {
            // collect metrics for Kubeflow jobs by interacting with Kubernetes API server  
            await delay(3000);
            await this.kubeflowJobInfoCollector.retrieveTrialStatus(this.kubernetesCRDClient);
        }
chicm-ms's avatar
chicm-ms committed
80
        this.log.info('Kubeflow training service exit.');
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    }

    public async submitTrialJob(form: JobApplicationForm): Promise<TrialJobDetail> {
        if(!this.kubernetesCRDClient) {
            throw new Error('Kubeflow job operator client is undefined');
        }

        if(!this.kubernetesRestServerPort) {
            const restServer: KubeflowJobRestServer = component.get(KubeflowJobRestServer);
            this.kubernetesRestServerPort = restServer.clusterRestServerPort;
        }
        const trialJobId: string = uniqueString(5);
        const trialWorkingFolder: string = path.join(this.CONTAINER_MOUNT_PATH, 'nni', getExperimentId(), trialJobId);
        const kubeflowJobName = `nni-exp-${this.experimentId}-trial-${trialJobId}`.toLowerCase();
        const curTrialSequenceId: number = this.generateSequenceId();
        const trialLocalTempFolder: string = path.join(getExperimentRootDir(), 'trials-local', trialJobId);
        //prepare the runscript
        await this.prepareRunScript(trialLocalTempFolder, trialJobId, trialWorkingFolder, curTrialSequenceId, form);
        //upload files to sotrage
        const trialJobOutputUrl: string = await this.uploadCodeFiles(trialJobId, trialLocalTempFolder);
        const trialJobDetail: KubernetesTrialJobDetail = new KubernetesTrialJobDetail(
            trialJobId,
            'WAITING',
            Date.now(),
            trialWorkingFolder,
            form,
            kubeflowJobName,
            curTrialSequenceId,
            trialJobOutputUrl
        );
       
        // Generate kubeflow job resource config object        
        const kubeflowJobConfig: any = await this.prepareKubeflowConfig(trialJobId, trialWorkingFolder, kubeflowJobName);
        // Create kubeflow job based on generated kubeflow job resource config
        await this.kubernetesCRDClient.createKubernetesJob(kubeflowJobConfig);

        // Set trial job detail until create Kubeflow job successfully 
        this.trialJobsMap.set(trialJobId, trialJobDetail);

        return Promise.resolve(trialJobDetail);
    }
    
    /**
     * upload code files to nfs or azureStroage
     * @param trialJobId 
     * @param trialLocalTempFolder 
     * return: trialJobOutputUrl
     */
    private async uploadCodeFiles(trialJobId: string, trialLocalTempFolder: string): Promise<string> {
        if(!this.kubeflowClusterConfig) {
            throw new Error('Kubeflow Cluster config is not initialized');
        }

        let trialJobOutputUrl: string = '';

        assert(!this.kubeflowClusterConfig.storage 
            || this.kubeflowClusterConfig.storage === 'azureStorage' 
            || this.kubeflowClusterConfig.storage === 'nfs');

        if(this.kubeflowClusterConfig.storage === 'azureStorage') {
            try{
                //upload local files to azure storage
                await AzureStorageClientUtility.uploadDirectory(this.azureStorageClient, 
                    `nni/${getExperimentId()}/${trialJobId}`, this.azureStorageShare, `${trialLocalTempFolder}`);

                trialJobOutputUrl = `https://${this.azureStorageAccountName}.file.core.windows.net/${this.azureStorageShare}/${path.join('nni', getExperimentId(), trialJobId, 'output')}`
            }catch(error){
                this.log.error(error);
                return Promise.reject(error);
            }
        } else if(this.kubeflowClusterConfig.storage === 'nfs' || this.kubeflowClusterConfig.storage === undefined) {
            let nfsKubeflowClusterConfig: KubeflowClusterConfigNFS = <KubeflowClusterConfigNFS>this.kubeflowClusterConfig;
            // Creat work dir for current trial in NFS directory 
            await cpp.exec(`mkdir -p ${this.trialLocalNFSTempFolder}/nni/${getExperimentId()}/${trialJobId}`);
            // Copy code files from local dir to NFS mounted dir
            await cpp.exec(`cp -r ${trialLocalTempFolder}/* ${this.trialLocalNFSTempFolder}/nni/${getExperimentId()}/${trialJobId}/.`);
        
            const nfsConfig: NFSConfig = nfsKubeflowClusterConfig.nfs;
            trialJobOutputUrl = `nfs://${nfsConfig.server}:${path.join(nfsConfig.path, 'nni', getExperimentId(), trialJobId, 'output')}`
        }

        return Promise.resolve(trialJobOutputUrl);
    }
    
    private async prepareRunScript(trialLocalTempFolder: string, trialJobId: string, trialWorkingFolder: string, curTrialSequenceId: number, form: JobApplicationForm): Promise<void> {
        if(!this.kubeflowClusterConfig) {
            throw new Error('Kubeflow Cluster config is not initialized');
        }

        // initialize kubeflow trial config to specific type
        let kubeflowTrialConfig;
        if(this.kubeflowClusterConfig.operator === 'tf-operator') {
            kubeflowTrialConfig = <KubeflowTrialConfigTensorflow>this.kubeflowTrialConfig;
        }else if(this.kubeflowClusterConfig.operator === 'pytorch-operator'){
            kubeflowTrialConfig = <KubeflowTrialConfigPytorch>this.kubeflowTrialConfig;
        }else {
            throw Error(`operator ${this.kubeflowClusterConfig.operator} is invalid`)
        }
    
       //create tmp trial working folder locally.
       await cpp.exec(`mkdir -p ${path.dirname(trialLocalTempFolder)}`);
       await cpp.exec(`cp -r ${kubeflowTrialConfig.codeDir} ${trialLocalTempFolder}`);
       const runScriptContent : string = CONTAINER_INSTALL_NNI_SHELL_FORMAT;
       // Write NNI installation file to local tmp files
       await fs.promises.writeFile(path.join(trialLocalTempFolder, 'install_nni.sh'), runScriptContent, { encoding: 'utf8' });
       // Create tmp trial working folder locally.
       await cpp.exec(`mkdir -p ${trialLocalTempFolder}`);

       // Write worker file content run_worker.sh to local tmp folders
       if(kubeflowTrialConfig.worker) {
191
           const workerRunScriptContent: string = await this.generateRunScript('kubeflow', trialJobId, trialWorkingFolder, 
192
193
194
195
196
197
198
199
                   kubeflowTrialConfig.worker.command, curTrialSequenceId.toString(), 'worker', kubeflowTrialConfig.worker.gpuNum);

           await fs.promises.writeFile(path.join(trialLocalTempFolder, 'run_worker.sh'), workerRunScriptContent, { encoding: 'utf8' });
       }
       // Write parameter server file content run_ps.sh to local tmp folders
       if(this.kubeflowClusterConfig.operator === 'tf-operator') {
           let tensorflowTrialConfig: KubeflowTrialConfigTensorflow = <KubeflowTrialConfigTensorflow>this.kubeflowTrialConfig;
           if(tensorflowTrialConfig.ps){
200
               const psRunScriptContent: string = await this.generateRunScript('kubeflow', trialJobId, trialWorkingFolder, 
201
202
203
204
205
206
207
                   tensorflowTrialConfig.ps.command, curTrialSequenceId.toString(), 'ps', tensorflowTrialConfig.ps.gpuNum);
               await fs.promises.writeFile(path.join(trialLocalTempFolder, 'run_ps.sh'), psRunScriptContent, { encoding: 'utf8' });
           }
       }
       else if(this.kubeflowClusterConfig.operator === 'pytorch-operator') {
           let pytorchTrialConfig: KubeflowTrialConfigPytorch = <KubeflowTrialConfigPytorch>this.kubeflowTrialConfig;
           if(pytorchTrialConfig.master){
208
               const masterRunScriptContent: string = await this.generateRunScript('kubeflow', trialJobId, trialWorkingFolder, 
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
                   pytorchTrialConfig.master.command, curTrialSequenceId.toString(), 'master', pytorchTrialConfig.master.gpuNum);
               await fs.promises.writeFile(path.join(trialLocalTempFolder, 'run_master.sh'), masterRunScriptContent, { encoding: 'utf8' });
           }
       }
       // Write file content ( parameter.cfg ) to local tmp folders
       const trialForm : TrialJobApplicationForm = (<TrialJobApplicationForm>form)
       if(trialForm && trialForm.hyperParameters) {
           await fs.promises.writeFile(path.join(trialLocalTempFolder, generateParamFileName(trialForm.hyperParameters)), 
                           trialForm.hyperParameters.value, { encoding: 'utf8' });
       }
    }
    
    private async prepareKubeflowConfig(trialJobId: string, trialWorkingFolder: string, kubeflowJobName: string): Promise<any> {
        if(!this.kubeflowClusterConfig) {
            throw new Error('Kubeflow Cluster config is not initialized');
        }

        if(!this.kubeflowTrialConfig) {
            throw new Error('Kubeflow trial config is not initialized');
        }

        // initialize kubeflow trial config to specific type
        let kubeflowTrialConfig;
        if(this.kubeflowClusterConfig.operator === 'tf-operator') {
            kubeflowTrialConfig = <KubeflowTrialConfigTensorflow>this.kubeflowTrialConfig;
        }else if(this.kubeflowClusterConfig.operator === 'pytorch-operator'){
            kubeflowTrialConfig = <KubeflowTrialConfigPytorch>this.kubeflowTrialConfig;
        }else {
            throw Error(`operator ${this.kubeflowClusterConfig.operator} is invalid`)
        }
        
        const workerPodResources : any = {};
        if(kubeflowTrialConfig.worker) {
            workerPodResources.requests = this.generatePodResource(kubeflowTrialConfig.worker.memoryMB, kubeflowTrialConfig.worker.cpuNum, 
                kubeflowTrialConfig.worker.gpuNum)
        }
        workerPodResources.limits = Object.assign({}, workerPodResources.requests);

        let nonWorkerResources : any = {};
        if(this.kubeflowClusterConfig.operator === 'tf-operator') {
            let tensorflowTrialConfig: KubeflowTrialConfigTensorflow = <KubeflowTrialConfigTensorflow>this.kubeflowTrialConfig;
            if (tensorflowTrialConfig.ps) {
                nonWorkerResources.requests = this.generatePodResource(tensorflowTrialConfig.ps.memoryMB, tensorflowTrialConfig.ps.cpuNum, 
                    tensorflowTrialConfig.ps.gpuNum)
                    nonWorkerResources.limits = Object.assign({}, nonWorkerResources.requests); 
            }
        }else if(this.kubeflowClusterConfig.operator === 'pytorch-operator'){
            let pyTorchTrialConfig: KubeflowTrialConfigPytorch = <KubeflowTrialConfigPytorch>this.kubeflowTrialConfig;
            nonWorkerResources.requests = this.generatePodResource(pyTorchTrialConfig.master.memoryMB, pyTorchTrialConfig.master.cpuNum, 
                pyTorchTrialConfig.master.gpuNum)
                nonWorkerResources.limits = Object.assign({}, nonWorkerResources.requests); 
            
        }       

        // Generate kubeflow job resource config object        
        const kubeflowJobConfig: any = this.generateKubeflowJobConfig(trialJobId, trialWorkingFolder, kubeflowJobName, workerPodResources, nonWorkerResources);

        return Promise.resolve(kubeflowJobConfig);
    } 

    public async setClusterMetadata(key: string, value: string): Promise<void> {
        switch (key) {
            case TrialConfigMetadataKey.NNI_MANAGER_IP:
                this.nniManagerIpConfig = <NNIManagerIpConfig>JSON.parse(value);
                break;
            
            case TrialConfigMetadataKey.KUBEFLOW_CLUSTER_CONFIG:
                let kubeflowClusterJsonObject = JSON.parse(value);
                this.kubeflowClusterConfig = KubeflowClusterConfigFactory.generateKubeflowClusterConfig(kubeflowClusterJsonObject);
                if(this.kubeflowClusterConfig.storageType === 'azureStorage') {
                    let azureKubeflowClusterConfig = <KubeflowClusterConfigAzure>this.kubeflowClusterConfig;
                    this.azureStorageAccountName = azureKubeflowClusterConfig.azureStorage.accountName;
                    this.azureStorageShare = azureKubeflowClusterConfig.azureStorage.azureShare;
                    await this.createAzureStorage(
                        azureKubeflowClusterConfig.keyVault.vaultName,
                        azureKubeflowClusterConfig.keyVault.name,
                        azureKubeflowClusterConfig.azureStorage.accountName,
                        azureKubeflowClusterConfig.azureStorage.azureShare
                    );
                } else if(this.kubeflowClusterConfig.storageType === 'nfs') {
                    let nfsKubeflowClusterConfig = <KubeflowClusterConfigNFS>this.kubeflowClusterConfig;
                    await this.createNFSStorage(
                        nfsKubeflowClusterConfig.nfs.server,
                        nfsKubeflowClusterConfig.nfs.path
                    );
                } 
                this.kubernetesCRDClient = KubeflowOperatorClient.generateOperatorClient(this.kubeflowClusterConfig.operator,
                                                                                     this.kubeflowClusterConfig.apiVersion);
                break;

            case TrialConfigMetadataKey.TRIAL_CONFIG:
                if (!this.kubeflowClusterConfig){
                    this.log.error('kubeflow cluster config is not initialized');
                    return Promise.reject(new Error('kubeflow cluster config is not initialized'));                    
                }

                assert(this.kubeflowClusterConfig !== undefined)
                let kubeflowTrialJsonObjsect = JSON.parse(value);
                this.kubeflowTrialConfig = KubeflowTrialConfigFactory.generateKubeflowTrialConfig(
                    kubeflowTrialJsonObjsect, 
                    this.kubeflowClusterConfig.operator
                );

                // Validate to make sure codeDir doesn't have too many files
                try {
                    await validateCodeDir(this.kubeflowTrialConfig.codeDir);
                } catch(error) {
                    this.log.error(error);
                    return Promise.reject(new Error(error));                    
                }
                break;
320
321
322
            case TrialConfigMetadataKey.VERSION_CHECK:
                this.versionCheck = (value === 'true' || value === 'True');
                break;
SparkSnail's avatar
SparkSnail committed
323
324
325
            case TrialConfigMetadataKey.LOG_COLLECTION:
                this.logCollection = value;
                break;
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
            default:
                break;
        }

        return Promise.resolve();
    }

    /**
     * Generate kubeflow resource config file
     * @param trialJobId trial job id
     * @param trialWorkingFolder working folder
     * @param kubeflowJobName job name
     * @param workerPodResources worker pod template
     * @param nonWorkerPodResources non-worker pod template, like ps or master
     */
    private generateKubeflowJobConfig(trialJobId: string, trialWorkingFolder: string, kubeflowJobName : string, workerPodResources : any, nonWorkerPodResources?: any) : any {
        if(!this.kubeflowClusterConfig) {
            throw new Error('Kubeflow Cluster config is not initialized');
        }

        if(!this.kubeflowTrialConfig) {
            throw new Error('Kubeflow trial config is not initialized');
        }

        if(!this.kubernetesCRDClient) {
            throw new Error('Kubeflow operator client is not initialized');
        }

        const replicaSpecsObj: any = {};
        let replicaSpecsObjMap = new Map<string, object>();

        if(this.kubeflowTrialConfig.operatorType === 'tf-operator') {
            let tensorflowTrialConfig: KubeflowTrialConfigTensorflow = <KubeflowTrialConfigTensorflow>this.kubeflowTrialConfig;
            replicaSpecsObj.Worker = this.generateReplicaConfig(trialWorkingFolder, tensorflowTrialConfig.worker.replicas, 
                tensorflowTrialConfig.worker.image, 'run_worker.sh', workerPodResources);
            
            if (tensorflowTrialConfig.ps){
                replicaSpecsObj.Ps = this.generateReplicaConfig(trialWorkingFolder, tensorflowTrialConfig.ps.replicas, 
                    tensorflowTrialConfig.ps.image, 'run_ps.sh', nonWorkerPodResources);
            }
            replicaSpecsObjMap.set(this.kubernetesCRDClient.jobKind, {'tfReplicaSpecs': replicaSpecsObj})
        }
        else if(this.kubeflowTrialConfig.operatorType === 'pytorch-operator') {
            let pytorchTrialConfig: KubeflowTrialConfigPytorch = <KubeflowTrialConfigPytorch>this.kubeflowTrialConfig;
            if(pytorchTrialConfig.worker) {
                replicaSpecsObj.Worker = this.generateReplicaConfig(trialWorkingFolder, pytorchTrialConfig.worker.replicas, 
                    pytorchTrialConfig.worker.image, 'run_worker.sh', workerPodResources);
            }
            replicaSpecsObj.Master = this.generateReplicaConfig(trialWorkingFolder, pytorchTrialConfig.master.replicas, 
                pytorchTrialConfig.master.image, 'run_master.sh', nonWorkerPodResources);
            
            replicaSpecsObjMap.set(this.kubernetesCRDClient.jobKind, {'pytorchReplicaSpecs': replicaSpecsObj})
        }

        return {
            apiVersion: `kubeflow.org/${this.kubernetesCRDClient.apiVersion}`,
            kind: this.kubernetesCRDClient.jobKind,
            metadata: { 
                name: kubeflowJobName,
                namespace: 'default',
                labels: {
                    app: this.NNI_KUBERNETES_TRIAL_LABEL,
                    expId: getExperimentId(),
                    trialId: trialJobId
                }
            },
            spec: replicaSpecsObjMap.get(this.kubernetesCRDClient.jobKind)
        };     
    }

    /**
     * Generate tf-operator's tfjobs replica config section
     * @param trialWorkingFolder trial working folder
     * @param replicaNumber replica number
     * @param replicaImage image
     * @param runScriptFile script file name
     * @param podResources pod resource config section
     */
    private generateReplicaConfig(trialWorkingFolder: string, replicaNumber: number, replicaImage: string, runScriptFile: string, podResources: any): any {
        if(!this.kubeflowClusterConfig) {
            throw new Error('Kubeflow Cluster config is not initialized');
        }

        if(!this.kubeflowTrialConfig) {
            throw new Error('Kubeflow trial config is not initialized');
        }

        if(!this.kubernetesCRDClient) {
            throw new Error('Kubeflow operator client is not initialized');
        }

        let volumeSpecMap = new Map<string, object>();
        if(this.kubeflowClusterConfig.storageType === 'azureStorage'){
            volumeSpecMap.set('nniVolumes', [
            {
                    name: 'nni-vol',
                    azureFile: {
                        secretName: `${this.azureStorageSecretName}`,
                        shareName: `${this.azureStorageShare}`,
                        readonly: false
                    }
            }])
        }else {
            let nfsKubeflowClusterConfig: KubeflowClusterConfigNFS = <KubeflowClusterConfigNFS> this.kubeflowClusterConfig;
            volumeSpecMap.set('nniVolumes', [
            {
                name: 'nni-vol',
                nfs: {
                    server: `${nfsKubeflowClusterConfig.nfs.server}`,
                    path: `${nfsKubeflowClusterConfig.nfs.path}`
                }
            }])
        }

        return {
            replicas: replicaNumber,
            template: {
                metadata: {
                    creationTimestamp: null
                },
                spec: {
                    containers: [
                    {
                        // Kubeflow tensorflow operator requires that containers' name must be tensorflow
                        // TODO: change the name based on operator's type
                        name: this.kubernetesCRDClient.containerName,
                        image: replicaImage,
                        args: ["sh", `${path.join(trialWorkingFolder, runScriptFile)}`],
                        volumeMounts: [
                        {
                            name: 'nni-vol',
                            mountPath: this.CONTAINER_MOUNT_PATH
                        }],
                        resources: podResources
                    }],
                    restartPolicy: 'ExitCode',
                    volumes: volumeSpecMap.get('nniVolumes')
                }
            }
        };
    }
}

export { KubeflowTrainingService }