Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nerfacc
Commits
4419a2c4
Commit
4419a2c4
authored
Sep 28, 2022
by
Ruilong Li
Browse files
every 5k steps; examples doc
parent
15f1c2a5
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
26 additions
and
17 deletions
+26
-17
docs/source/examples/dnerf.rst
docs/source/examples/dnerf.rst
+0
-0
docs/source/examples/ngp.rst
docs/source/examples/ngp.rst
+21
-14
docs/source/examples/unbounded.rst
docs/source/examples/unbounded.rst
+0
-0
docs/source/examples/vanilla.rst
docs/source/examples/vanilla.rst
+2
-0
examples/train_mlp_dnerf.py
examples/train_mlp_dnerf.py
+1
-1
examples/train_mlp_nerf.py
examples/train_mlp_nerf.py
+1
-1
examples/train_ngp_nerf.py
examples/train_ngp_nerf.py
+1
-1
No files found.
docs/source/examples/dnerf.rst
0 → 100644
View file @
4419a2c4
docs/source/examples/ngp.rst
View file @
4419a2c4
Instant-NGP
====================
See code at our github repository
: https://github.com/KAIR-BAIR/nerfacc/tree/master/examples/
See code
`examples/train_ngp_nerf.py`
at our
`
github repository
`_ for details.
Benchmarks
------------
W
e trained
on NeRF-Synthetic trainval set using TITAN RTX, and evaluated on testset.
Note Instant-NGP's results are taken from
the paper, which
i
s train
ed on a Nvidia 3090,
with random background trick using alpha channel
.
Here w
e trained
a NGP Nerf model on the NeRF-Synthetic dataset. We follow the same
settings with
the paper, which
use
s train
val split for training and test split for
evaluation. Our experiments are conducted on a single NVIDIA TITAN RTX GPU
.
+----------------------+----------+----------+------------+-------+--------+
| | Lego | Mic | Materials |Chair |Hotdog |
| | | | | | |
+======================+==========+==========+============+=======+========+
| Paper (PSNR: 5min) | 36.39 | 36.22 | 29.78 | 35.00| 37.40 |
+----------------------+----------+----------+------------+-------+--------+
| Ours (PSNR) | 36.61 | 37.45 | 30.15 | 36.06 | 38.17 |
+----------------------+----------+----------+------------+-------+--------+
| Ours (Training time)| 300s | 272s | 258s | 331s | 287s |
+----------------------+----------+----------+------------+-------+--------+
.. note::
The paper makes use of the alpha channel in the images to apply random background
augmentation during training. Yet we only uses a constant white background.
+----------------------+----------+----------+------------+-------+--------+--------+--------+--------+
| | Lego | Mic | Materials |Chair |Hotdog | Ficus | Drums | Ship |
| | | | | | | | | |
+======================+==========+==========+============+=======+========+========+========+========+
| Paper (PSNR: 5min) | 36.39 | 36.22 | 29.78 | 35.00 | 37.40 | 33.51 | 26.02 | 31.10 |
+----------------------+----------+----------+------------+-------+--------+--------+--------+--------+
| Ours (PSNR) | 36.61 | 37.45 | 30.15 | 36.10 | 38.17 | | 25.83 | |
+----------------------+----------+----------+------------+-------+--------+--------+--------+--------+
| Ours (Training time)| 300s | 272s | 258s | 311s | 287s | | 249s | |
+----------------------+----------+----------+------------+-------+--------+--------+--------+--------+
.. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/
\ No newline at end of file
docs/source/examples/unbounded.rst
0 → 100644
View file @
4419a2c4
docs/source/examples/vanilla.rst
0 → 100644
View file @
4419a2c4
Vanilla Nerf
====================
examples/train_mlp_dnerf.py
View file @
4419a2c4
...
...
@@ -170,7 +170,7 @@ if __name__ == "__main__":
optimizer
.
step
()
scheduler
.
step
()
if
step
%
1
00
==
0
:
if
step
%
50
00
==
0
:
elapsed_time
=
time
.
time
()
-
tic
loss
=
F
.
mse_loss
(
rgb
[
alive_ray_mask
],
pixels
[
alive_ray_mask
])
print
(
...
...
examples/train_mlp_nerf.py
View file @
4419a2c4
...
...
@@ -196,7 +196,7 @@ if __name__ == "__main__":
optimizer
.
step
()
scheduler
.
step
()
if
step
%
1
00
==
0
:
if
step
%
50
00
==
0
:
elapsed_time
=
time
.
time
()
-
tic
loss
=
F
.
mse_loss
(
rgb
[
alive_ray_mask
],
pixels
[
alive_ray_mask
])
print
(
...
...
examples/train_ngp_nerf.py
View file @
4419a2c4
...
...
@@ -201,7 +201,7 @@ if __name__ == "__main__":
optimizer
.
step
()
scheduler
.
step
()
if
step
%
1
00
==
0
:
if
step
%
50
00
==
0
:
elapsed_time
=
time
.
time
()
-
tic
loss
=
F
.
mse_loss
(
rgb
[
alive_ray_mask
],
pixels
[
alive_ray_mask
])
print
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment