Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nerfacc
Commits
127223b1
Unverified
Commit
127223b1
authored
Oct 09, 2022
by
Ruilong Li(李瑞龙)
Committed by
GitHub
Oct 09, 2022
Browse files
sync pref (#60)
parent
6b8c91fd
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
10 additions
and
8 deletions
+10
-8
README.md
README.md
+1
-1
docs/source/examples/dnerf.rst
docs/source/examples/dnerf.rst
+4
-3
docs/source/examples/ngp.rst
docs/source/examples/ngp.rst
+1
-1
docs/source/examples/unbounded.rst
docs/source/examples/unbounded.rst
+1
-1
docs/source/examples/vanilla.rst
docs/source/examples/vanilla.rst
+2
-1
docs/source/index.rst
docs/source/index.rst
+1
-1
No files found.
README.md
View file @
127223b1
...
@@ -14,7 +14,7 @@ Using NerfAcc,
...
@@ -14,7 +14,7 @@ Using NerfAcc,
-
The
`Instant-NGP NeRF`
model can be trained to
*better quality*
(+~0.7 PSNR) with
*9/10th*
of
-
The
`Instant-NGP NeRF`
model can be trained to
*better quality*
(+~0.7 PSNR) with
*9/10th*
of
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
-
The
`D-NeRF`
model for
*dynamic*
objects can also be trained in
*1 hour*
-
The
`D-NeRF`
model for
*dynamic*
objects can also be trained in
*1 hour*
rather than
*2 days*
as in the paper, and with
*better quality*
(+~
0.5
PSNR).
rather than
*2 days*
as in the paper, and with
*better quality*
(+~
2.0
PSNR).
-
Both
*bounded*
and
*unbounded*
scenes are supported.
-
Both
*bounded*
and
*unbounded*
scenes are supported.
**And it is pure Python interface with flexible APIs!**
**And it is pure Python interface with flexible APIs!**
...
...
docs/source/examples/dnerf.rst
View file @
127223b1
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_dnerf.py` at our `github repository`_ for details.
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_dnerf.py` at our `github repository`_ for details.
Benchmarks
Benchmarks
------------
------------
*updated on 2022-10-08*
Here we trained a 8-layer-MLP for the radiance field and a 4-layer-MLP for the warping field,
Here we trained a 8-layer-MLP for the radiance field and a 4-layer-MLP for the warping field,
(similar to the T-Nerf model in the `D-Nerf`_ paper) on the `D-Nerf dataset`_. We used train
(similar to the T-Nerf model in the `D-Nerf`_ paper) on the `D-Nerf dataset`_. We used train
...
@@ -24,12 +25,12 @@ single NVIDIA TITAN RTX GPU. The training memory footprint is about 11GB.
...
@@ -24,12 +25,12 @@ single NVIDIA TITAN RTX GPU. The training memory footprint is about 11GB.
+======================+==========+=========+=======+=========+=======+========+=========+=======+=======+
+======================+==========+=========+=======+=========+=======+========+=========+=======+=======+
| D-Nerf (~ days) | 38.93 | 25.02 | 29.25 | 32.80 | 21.64 | 31.29 | 32.79 | 31.75 | 30.43 |
| D-Nerf (~ days) | 38.93 | 25.02 | 29.25 | 32.80 | 21.64 | 31.29 | 32.79 | 31.75 | 30.43 |
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
| Ours (~
50min)
| 39.
60
| 2
2.41
| 3
0.64
| 2
9
.7
9
| 24.
75
| 35.
20
| 3
4.5
0 | 3
1.8
3 | 3
1.09
|
| Ours (~
1 hr)
| 39.
49
| 2
5.58
| 3
1.86
|
3
2.7
3
| 24.
32
| 35.
55
| 3
5.9
0 | 3
2.3
3 | 3
2.22
|
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
| Ours (Training time)|
45
min |
49
min |
51
min |
4
6min |
53
min |
5
7min |
4
9min |
46
min | 5
0
min |
| Ours (Training time)|
37
min |
52
min |
69
min | 6
4
min |
44
min | 7
9
min |
7
9min |
39
min | 5
8
min |
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
+----------------------+----------+---------+-------+---------+-------+--------+---------+-------+-------+
.. _`D-Nerf`: https://arxiv.org/abs/2011.13961
.. _`D-Nerf`: https://arxiv.org/abs/2011.13961
.. _`D-Nerf dataset`: https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0
.. _`D-Nerf dataset`: https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
docs/source/examples/ngp.rst
View file @
127223b1
...
@@ -31,5 +31,5 @@ memory footprint is about 3GB.
...
@@ -31,5 +31,5 @@ memory footprint is about 3GB.
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
.. _`Nerf-Synthetic dataset`: https://drive.google.com/drive/folders/1JDdLGDruGNXWnM1eqY1FNL9PlStjaKWi
.. _`Nerf-Synthetic dataset`: https://drive.google.com/drive/folders/1JDdLGDruGNXWnM1eqY1FNL9PlStjaKWi
docs/source/examples/unbounded.rst
View file @
127223b1
...
@@ -40,4 +40,4 @@ that takes from `MipNerf360`_.
...
@@ -40,4 +40,4 @@ that takes from `MipNerf360`_.
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`Instant-NGP Nerf`: https://arxiv.org/abs/2201.05989
.. _`MipNerf360`: https://arxiv.org/abs/2111.12077
.. _`MipNerf360`: https://arxiv.org/abs/2111.12077
.. _`Nerf++`: https://arxiv.org/abs/2010.07492
.. _`Nerf++`: https://arxiv.org/abs/2010.07492
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
docs/source/examples/vanilla.rst
View file @
127223b1
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_nerf.py` at our `github repository`_ for details.
...
@@ -5,6 +5,7 @@ See code `examples/train_mlp_nerf.py` at our `github repository`_ for details.
Benchmarks
Benchmarks
------------
------------
*updated on 2022-10-08*
Here we trained a 8-layer-MLP for the radiance field as in the `vanilla Nerf`_. We used the
Here we trained a 8-layer-MLP for the radiance field as in the `vanilla Nerf`_. We used the
train split for training and test split for evaluation as in the Nerf paper. Our experiments are
train split for training and test split for evaluation as in the Nerf paper. Our experiments are
...
@@ -28,5 +29,5 @@ conducted on a single NVIDIA TITAN RTX GPU. The training memory footprint is abo
...
@@ -28,5 +29,5 @@ conducted on a single NVIDIA TITAN RTX GPU. The training memory footprint is abo
| Ours (Training time)| 58min | 53min | 46min | 62min | 56min | 42min | 52min | 49min | 52min |
| Ours (Training time)| 58min | 53min | 46min | 62min | 56min | 42min | 52min | 49min | 52min |
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
+----------------------+-------+-------+---------+-------+-------+-------+-------+-------+-------+
.. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/
.. _`github repository`: : https://github.com/KAIR-BAIR/nerfacc/
tree/5637cc9a1565b2685c02250eb1ee1c53d3b07af1
.. _`vanilla Nerf`: https://arxiv.org/abs/2003.08934
.. _`vanilla Nerf`: https://arxiv.org/abs/2003.08934
docs/source/index.rst
View file @
127223b1
...
@@ -11,7 +11,7 @@ Using NerfAcc,
...
@@ -11,7 +11,7 @@ Using NerfAcc,
- The `Instant-NGP Nerf`_ model can be trained to *better quality* (+~0.7 PSNR) with *9/10th* of \
- The `Instant-NGP Nerf`_ model can be trained to *better quality* (+~0.7 PSNR) with *9/10th* of \
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
the training time (4.5 minutes) comparing to the official pure-CUDA implementation.
- The `D-Nerf`_ model for *dynamic* objects can also be trained in *1 hour* \
- The `D-Nerf`_ model for *dynamic* objects can also be trained in *1 hour* \
rather than *2 days* as in the paper, and with *better quality* (+~
0.5
PSNR).
rather than *2 days* as in the paper, and with *better quality* (+~
2.0
PSNR).
- Both *bounded* and *unbounded* scenes are supported.
- Both *bounded* and *unbounded* scenes are supported.
**And it is pure Python interface with flexible APIs!**
**And it is pure Python interface with flexible APIs!**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment