train_mlp_dnerf.py 7.67 KB
Newer Older
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import math
import os
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from datasets.dnerf_synthetic import SubjectLoader
from radiance_fields.mlp import DNeRFRadianceField
from utils import render_image, set_random_seed

from nerfacc import ContractionType, OccupancyGrid

if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--train_split",
        type=str,
        default="train",
        choices=["train"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # dnerf
            "bouncingballs",
            "hellwarrior",
            "hook",
            "jumpingjacks",
            "lego",
            "mutant",
            "standup",
            "trex",
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
        default=8192,
    )
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 1024

    # setup the scene bounding box.
    contraction_type = ContractionType.AABB
    scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
    near_plane = None
    far_plane = None
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max()
        * math.sqrt(3)
        / render_n_samples
    ).item()

    # setup the radiance field we want to train.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
75
    max_steps = 50000
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
76
77
78
79
80
    grad_scaler = torch.cuda.amp.GradScaler(1)
    radiance_field = DNeRFRadianceField().to(device)
    optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
81
82
83
84
85
86
        milestones=[
            max_steps // 2,
            max_steps * 3 // 4,
            max_steps * 5 // 6,
            max_steps * 9 // 10,
        ],
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        gamma=0.33,
    )
    # setup the dataset
    data_root_fp = "/home/ruilongli/data/dnerf/"
    target_sample_batch_size = 1 << 16
    grid_resolution = 128

    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split=args.train_split,
        num_rays=target_sample_batch_size // render_n_samples,
    )
    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
    train_dataset.timestamps = train_dataset.timestamps.to(device)

    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split="test",
        num_rays=None,
    )
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
    test_dataset.timestamps = test_dataset.timestamps.to(device)

    occupancy_grid = OccupancyGrid(
        roi_aabb=args.aabb,
        resolution=grid_resolution,
        contraction_type=contraction_type,
    ).to(device)

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
            timestamps = data["timestamps"]

            # update occupancy grid
            occupancy_grid.every_n_step(
                step=step,
                occ_eval_fn=lambda x: radiance_field.query_opacity(
                    x, timestamps, render_step_size
                ),
            )

            # render
            rgb, acc, depth, n_rendering_samples = render_image(
                radiance_field,
                occupancy_grid,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
                # dnerf options
                timestamps=timestamps,
            )

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

Ruilong Li's avatar
Ruilong Li committed
177
            if step % 5000 == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
                    f"elapsed_time={elapsed_time:.2f}s | {step=} | "
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

            if step >= 0 and step % max_steps == 0 and step > 0:
                # evaluation
                radiance_field.eval()

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]
                        timestamps = data["timestamps"]

                        # rendering
                        rgb, acc, depth, _ = render_image(
                            radiance_field,
                            occupancy_grid,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=None,
                            far_plane=None,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
                            # test options
                            test_chunk_size=args.test_chunk_size,
                            # dnerf options
                            timestamps=timestamps,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        # imageio.imwrite(
                        #     "acc_binary_test.png",
                        #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # imageio.imwrite(
                        #     "rgb_test.png",
                        #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # break
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1