dnerf_synthetic.py 7.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import collections
import json
import os

import imageio.v2 as imageio
import numpy as np
import torch
import torch.nn.functional as F

Rays = collections.namedtuple("Rays", ("origins", "viewdirs"))


def namedtuple_map(fn, tup):
    """Apply `fn` to each element of `tup` and cast to `tup`'s namedtuple."""
    return type(tup)(*(None if x is None else fn(x) for x in tup))


def _load_renderings(root_fp: str, subject_id: str, split: str):
    """Load images from disk."""
    if not root_fp.startswith("/"):
        # allow relative path. e.g., "./data/dnerf_synthetic/"
        root_fp = os.path.join(
            os.path.dirname(os.path.abspath(__file__)),
            "..",
            "..",
            root_fp,
        )

    data_dir = os.path.join(root_fp, subject_id)
    with open(os.path.join(data_dir, "transforms_{}.json".format(split)), "r") as fp:
        meta = json.load(fp)
    images = []
    camtoworlds = []
    timestamps = []

    for i in range(len(meta["frames"])):
        frame = meta["frames"][i]
        fname = os.path.join(data_dir, frame["file_path"] + ".png")
        rgba = imageio.imread(fname)
        timestamp = (
            frame["time"] if "time" in frame else float(i) / (len(meta["frames"]) - 1)
        )
        timestamps.append(timestamp)
        camtoworlds.append(frame["transform_matrix"])
        images.append(rgba)

    images = np.stack(images, axis=0)
    camtoworlds = np.stack(camtoworlds, axis=0)
    timestamps = np.stack(timestamps, axis=0)

    h, w = images.shape[1:3]
    camera_angle_x = float(meta["camera_angle_x"])
    focal = 0.5 * w / np.tan(0.5 * camera_angle_x)

    return images, camtoworlds, focal, timestamps


class SubjectLoader(torch.utils.data.Dataset):
    """Single subject data loader for training and evaluation."""

    SPLITS = ["train", "val", "test"]
    SUBJECT_IDS = [
        "bouncingballs",
        "hellwarrior",
        "hook",
        "jumpingjacks",
        "lego",
        "mutant",
        "standup",
        "trex",
    ]

    WIDTH, HEIGHT = 800, 800
    NEAR, FAR = 2.0, 6.0
    OPENGL_CAMERA = True

    def __init__(
        self,
        subject_id: str,
        root_fp: str,
        split: str,
        color_bkgd_aug: str = "white",
        num_rays: int = None,
        near: float = None,
        far: float = None,
        batch_over_images: bool = True,
    ):
        super().__init__()
        assert split in self.SPLITS, "%s" % split
        assert subject_id in self.SUBJECT_IDS, "%s" % subject_id
        assert color_bkgd_aug in ["white", "black", "random"]
        self.split = split
        self.num_rays = num_rays
        self.near = self.NEAR if near is None else near
        self.far = self.FAR if far is None else far
        self.training = (num_rays is not None) and (split in ["train", "trainval"])
        self.color_bkgd_aug = color_bkgd_aug
        self.batch_over_images = batch_over_images
        self.images, self.camtoworlds, self.focal, self.timestamps = _load_renderings(
            root_fp, subject_id, split
        )
        self.images = torch.from_numpy(self.images).to(torch.uint8)
        self.camtoworlds = torch.from_numpy(self.camtoworlds).to(torch.float32)
        self.timestamps = torch.from_numpy(self.timestamps).to(torch.float32)[:, None]
        self.K = torch.tensor(
            [
                [self.focal, 0, self.WIDTH / 2.0],
                [0, self.focal, self.HEIGHT / 2.0],
                [0, 0, 1],
            ],
            dtype=torch.float32,
        )  # (3, 3)
        assert self.images.shape[1:3] == (self.HEIGHT, self.WIDTH)

    def __len__(self):
        return len(self.images)

    @torch.no_grad()
    def __getitem__(self, index):
        data = self.fetch_data(index)
        data = self.preprocess(data)
        return data

    def preprocess(self, data):
        """Process the fetched / cached data with randomness."""
        rgba, rays = data["rgba"], data["rays"]
        pixels, alpha = torch.split(rgba, [3, 1], dim=-1)

        if self.training:
            if self.color_bkgd_aug == "random":
                color_bkgd = torch.rand(3, device=self.images.device)
            elif self.color_bkgd_aug == "white":
                color_bkgd = torch.ones(3, device=self.images.device)
            elif self.color_bkgd_aug == "black":
                color_bkgd = torch.zeros(3, device=self.images.device)
        else:
            # just use white during inference
            color_bkgd = torch.ones(3, device=self.images.device)

        pixels = pixels * alpha + color_bkgd * (1.0 - alpha)
        return {
            "pixels": pixels,  # [n_rays, 3] or [h, w, 3]
            "rays": rays,  # [n_rays,] or [h, w]
            "color_bkgd": color_bkgd,  # [3,]
            **{k: v for k, v in data.items() if k not in ["rgba", "rays"]},
        }

    def update_num_rays(self, num_rays):
        self.num_rays = num_rays

    def fetch_data(self, index):
        """Fetch the data (it maybe cached for multiple batches)."""
        num_rays = self.num_rays

        if self.training:
            if self.batch_over_images:
                image_id = torch.randint(
                    0,
                    len(self.images),
                    size=(num_rays,),
                    device=self.images.device,
                )
            else:
                image_id = [index]
            x = torch.randint(
                0, self.WIDTH, size=(num_rays,), device=self.images.device
            )
            y = torch.randint(
                0, self.HEIGHT, size=(num_rays,), device=self.images.device
            )
        else:
            image_id = [index]
            x, y = torch.meshgrid(
                torch.arange(self.WIDTH, device=self.images.device),
                torch.arange(self.HEIGHT, device=self.images.device),
                indexing="xy",
            )
            x = x.flatten()
            y = y.flatten()

        # generate rays
        rgba = self.images[image_id, y, x] / 255.0  # (num_rays, 4)
        c2w = self.camtoworlds[image_id]  # (num_rays, 3, 4)
        camera_dirs = F.pad(
            torch.stack(
                [
                    (x - self.K[0, 2] + 0.5) / self.K[0, 0],
                    (y - self.K[1, 2] + 0.5)
                    / self.K[1, 1]
                    * (-1.0 if self.OPENGL_CAMERA else 1.0),
                ],
                dim=-1,
            ),
            (0, 1),
            value=(-1.0 if self.OPENGL_CAMERA else 1.0),
        )  # [num_rays, 3]

        # [n_cams, height, width, 3]
        directions = (camera_dirs[:, None, :] * c2w[:, :3, :3]).sum(dim=-1)
        origins = torch.broadcast_to(c2w[:, :3, -1], directions.shape)
        viewdirs = directions / torch.linalg.norm(directions, dim=-1, keepdims=True)

        if self.training:
            origins = torch.reshape(origins, (num_rays, 3))
            viewdirs = torch.reshape(viewdirs, (num_rays, 3))
            rgba = torch.reshape(rgba, (num_rays, 4))
        else:
            origins = torch.reshape(origins, (self.HEIGHT, self.WIDTH, 3))
            viewdirs = torch.reshape(viewdirs, (self.HEIGHT, self.WIDTH, 3))
            rgba = torch.reshape(rgba, (self.HEIGHT, self.WIDTH, 4))

        rays = Rays(origins=origins, viewdirs=viewdirs)
        timestamps = self.timestamps[image_id]

        return {
            "rgba": rgba,  # [h, w, 4] or [num_rays, 4]
            "rays": rays,  # [h, w, 3] or [num_rays, 3]
            "timestamps": timestamps,  # [num_rays, 1]
        }