run_profiler.py 3.29 KB
Newer Older
1
2
3
from typing import Callable

import torch
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
4
import tqdm
5
6
7

import nerfacc

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
8
9
10
# timing
# https://github.com/pytorch/pytorch/commit/d2784c233bfc57a1d836d961694bcc8ec4ed45e4

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

class Profiler:
    def __init__(self, warmup=10, repeat=1000):
        self.warmup = warmup
        self.repeat = repeat

    def __call__(self, func: Callable):
        # warmup
        for _ in range(self.warmup):
            func()
        torch.cuda.synchronize()

        # profile
        with torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
            ],
            profile_memory=True,
        ) as prof:
            for _ in range(self.repeat):
                func()
            torch.cuda.synchronize()

        # return
        events = prof.key_averages()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
37
        # print(events.table(sort_by="self_cpu_time_total", row_limit=10))
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        self_cpu_time_total = (
            sum([event.self_cpu_time_total for event in events]) / self.repeat
        )
        self_cuda_time_total = (
            sum([event.self_cuda_time_total for event in events]) / self.repeat
        )
        self_cuda_memory_usage = max(
            [event.self_cuda_memory_usage for event in events]
        )
        return (
            self_cpu_time_total,  # in us
            self_cuda_time_total,  # in us
            self_cuda_memory_usage,  # in bytes
        )


def main():
    device = "cuda:0"
    torch.manual_seed(42)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    profiler = Profiler(warmup=10, repeat=100)

    # # contract
    # print("* contract")
    # x = torch.rand([1024, 3], device=device)
    # roi = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.float32, device=device)
    # fn = lambda: nerfacc.contract(
    #     x, roi=roi, type=nerfacc.ContractionType.UN_BOUNDED_TANH
    # )
    # cpu_t, cuda_t, cuda_bytes = profiler(fn)
    # print(f"{cpu_t:.2f} us, {cuda_t:.2f} us, {cuda_bytes / 1024 / 1024:.2f} MB")

    # rendering
    print("* rendering")
    batch_size = 81920
    rays_o = torch.rand((batch_size, 3), device=device)
    rays_d = torch.randn((batch_size, 3), device=device)
    rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True)

    ray_indices, t_starts, t_ends = nerfacc.ray_marching(
        rays_o,
        rays_d,
        near_plane=0.1,
        far_plane=1.0,
        render_step_size=1e-1,
    )
    sigmas = torch.randn_like(t_starts, requires_grad=True)
    fn = (
        lambda: nerfacc.render_weight_from_density(
            ray_indices, t_starts, t_ends, sigmas
        )
        .sum()
        .backward()
    )
    fn()
    torch.cuda.synchronize()
    for _ in tqdm.tqdm(range(100)):
        fn()
        torch.cuda.synchronize()

    cpu_t, cuda_t, cuda_bytes = profiler(fn)
    print(f"{cpu_t:.2f} us, {cuda_t:.2f} us, {cuda_bytes / 1024 / 1024:.2f} MB")

100
    packed_info = nerfacc.pack_info(ray_indices, n_rays=batch_size)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
101
102
103
104
105
106
    fn = (
        lambda: nerfacc.vol_rendering._RenderingDensity.apply(
            packed_info, t_starts, t_ends, sigmas, 0
        )
        .sum()
        .backward()
107
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
108
109
110
111
112
    fn()
    torch.cuda.synchronize()
    for _ in tqdm.tqdm(range(100)):
        fn()
        torch.cuda.synchronize()
113
114
115
116
117
118
    cpu_t, cuda_t, cuda_bytes = profiler(fn)
    print(f"{cpu_t:.2f} us, {cuda_t:.2f} us, {cuda_bytes / 1024 / 1024:.2f} MB")


if __name__ == "__main__":
    main()