nerf_synthetic.py 7.36 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li's avatar
Ruilong Li committed
5
import collections
Ruilong Li's avatar
Ruilong Li committed
6
7
8
9
10
11
import json
import os

import imageio.v2 as imageio
import numpy as np
import torch
Ruilong Li's avatar
Ruilong Li committed
12
import torch.nn.functional as F
Ruilong Li's avatar
Ruilong Li committed
13

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
14
from .utils import Rays
Ruilong Li's avatar
Ruilong Li committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28


def _load_renderings(root_fp: str, subject_id: str, split: str):
    """Load images from disk."""
    if not root_fp.startswith("/"):
        # allow relative path. e.g., "./data/nerf_synthetic/"
        root_fp = os.path.join(
            os.path.dirname(os.path.abspath(__file__)),
            "..",
            "..",
            root_fp,
        )

    data_dir = os.path.join(root_fp, subject_id)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
29
30
31
    with open(
        os.path.join(data_dir, "transforms_{}.json".format(split)), "r"
    ) as fp:
Ruilong Li's avatar
Ruilong Li committed
32
33
34
35
36
37
38
39
40
41
42
        meta = json.load(fp)
    images = []
    camtoworlds = []

    for i in range(len(meta["frames"])):
        frame = meta["frames"][i]
        fname = os.path.join(data_dir, frame["file_path"] + ".png")
        rgba = imageio.imread(fname)
        camtoworlds.append(frame["transform_matrix"])
        images.append(rgba)

Ruilong Li's avatar
Ruilong Li committed
43
44
    images = np.stack(images, axis=0)
    camtoworlds = np.stack(camtoworlds, axis=0)
Ruilong Li's avatar
Ruilong Li committed
45
46
47
48
49
50
51
52

    h, w = images.shape[1:3]
    camera_angle_x = float(meta["camera_angle_x"])
    focal = 0.5 * w / np.tan(0.5 * camera_angle_x)

    return images, camtoworlds, focal


Ruilong Li's avatar
Ruilong Li committed
53
class SubjectLoader(torch.utils.data.Dataset):
Ruilong Li's avatar
Ruilong Li committed
54
55
    """Single subject data loader for training and evaluation."""

Ruilong Li's avatar
Ruilong Li committed
56
    SPLITS = ["train", "val", "trainval", "test"]
Ruilong Li's avatar
Ruilong Li committed
57
58
59
60
61
62
63
64
    SUBJECT_IDS = [
        "chair",
        "drums",
        "ficus",
        "hotdog",
        "lego",
        "materials",
        "mic",
Ruilong Li's avatar
Ruilong Li committed
65
        "ship",
Ruilong Li's avatar
Ruilong Li committed
66
67
68
69
    ]

    WIDTH, HEIGHT = 800, 800
    NEAR, FAR = 2.0, 6.0
Ruilong Li's avatar
wtf  
Ruilong Li committed
70
    OPENGL_CAMERA = True
Ruilong Li's avatar
Ruilong Li committed
71
72
73
74
75
76
77
78
79
80

    def __init__(
        self,
        subject_id: str,
        root_fp: str,
        split: str,
        color_bkgd_aug: str = "white",
        num_rays: int = None,
        near: float = None,
        far: float = None,
Ruilong Li's avatar
Ruilong Li committed
81
        batch_over_images: bool = True,
Ruilong Li's avatar
Ruilong Li committed
82
    ):
Ruilong Li's avatar
Ruilong Li committed
83
        super().__init__()
Ruilong Li's avatar
Ruilong Li committed
84
85
86
87
88
89
90
        assert split in self.SPLITS, "%s" % split
        assert subject_id in self.SUBJECT_IDS, "%s" % subject_id
        assert color_bkgd_aug in ["white", "black", "random"]
        self.split = split
        self.num_rays = num_rays
        self.near = self.NEAR if near is None else near
        self.far = self.FAR if far is None else far
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
91
92
93
        self.training = (num_rays is not None) and (
            split in ["train", "trainval"]
        )
Ruilong Li's avatar
Ruilong Li committed
94
        self.color_bkgd_aug = color_bkgd_aug
Ruilong Li's avatar
Ruilong Li committed
95
        self.batch_over_images = batch_over_images
Ruilong Li's avatar
Ruilong Li committed
96
97
98
99
100
101
102
103
        if split == "trainval":
            _images_train, _camtoworlds_train, _focal_train = _load_renderings(
                root_fp, subject_id, "train"
            )
            _images_val, _camtoworlds_val, _focal_val = _load_renderings(
                root_fp, subject_id, "val"
            )
            self.images = np.concatenate([_images_train, _images_val])
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
104
105
106
            self.camtoworlds = np.concatenate(
                [_camtoworlds_train, _camtoworlds_val]
            )
Ruilong Li's avatar
Ruilong Li committed
107
108
109
110
111
            self.focal = _focal_train
        else:
            self.images, self.camtoworlds, self.focal = _load_renderings(
                root_fp, subject_id, split
            )
Ruilong Li's avatar
Ruilong Li committed
112
113
114
115
116
117
118
119
120
121
        self.images = torch.from_numpy(self.images).to(torch.uint8)
        self.camtoworlds = torch.from_numpy(self.camtoworlds).to(torch.float32)
        self.K = torch.tensor(
            [
                [self.focal, 0, self.WIDTH / 2.0],
                [0, self.focal, self.HEIGHT / 2.0],
                [0, 0, 1],
            ],
            dtype=torch.float32,
        )  # (3, 3)
Ruilong Li's avatar
Ruilong Li committed
122
123
124
125
126
        assert self.images.shape[1:3] == (self.HEIGHT, self.WIDTH)

    def __len__(self):
        return len(self.images)

Ruilong Li's avatar
Ruilong Li committed
127
    @torch.no_grad()
Ruilong Li's avatar
Ruilong Li committed
128
129
130
131
132
    def __getitem__(self, index):
        data = self.fetch_data(index)
        data = self.preprocess(data)
        return data

Ruilong Li's avatar
Ruilong Li committed
133
134
135
136
137
138
139
    def preprocess(self, data):
        """Process the fetched / cached data with randomness."""
        rgba, rays = data["rgba"], data["rays"]
        pixels, alpha = torch.split(rgba, [3, 1], dim=-1)

        if self.training:
            if self.color_bkgd_aug == "random":
Ruilong Li's avatar
Ruilong Li committed
140
                color_bkgd = torch.rand(3, device=self.images.device)
Ruilong Li's avatar
Ruilong Li committed
141
            elif self.color_bkgd_aug == "white":
Ruilong Li's avatar
Ruilong Li committed
142
                color_bkgd = torch.ones(3, device=self.images.device)
Ruilong Li's avatar
Ruilong Li committed
143
            elif self.color_bkgd_aug == "black":
Ruilong Li's avatar
Ruilong Li committed
144
                color_bkgd = torch.zeros(3, device=self.images.device)
Ruilong Li's avatar
Ruilong Li committed
145
146
        else:
            # just use white during inference
Ruilong Li's avatar
Ruilong Li committed
147
            color_bkgd = torch.ones(3, device=self.images.device)
Ruilong Li's avatar
Ruilong Li committed
148
149
150
151
152
153
154
155
156

        pixels = pixels * alpha + color_bkgd * (1.0 - alpha)
        return {
            "pixels": pixels,  # [n_rays, 3] or [h, w, 3]
            "rays": rays,  # [n_rays,] or [h, w]
            "color_bkgd": color_bkgd,  # [3,]
            **{k: v for k, v in data.items() if k not in ["rgba", "rays"]},
        }

Ruilong Li's avatar
Ruilong Li committed
157
158
159
    def update_num_rays(self, num_rays):
        self.num_rays = num_rays

Ruilong Li's avatar
Ruilong Li committed
160
161
    def fetch_data(self, index):
        """Fetch the data (it maybe cached for multiple batches)."""
Ruilong Li's avatar
Ruilong Li committed
162
163
        num_rays = self.num_rays

Ruilong Li's avatar
Ruilong Li committed
164
165
166
167
168
        if self.training:
            if self.batch_over_images:
                image_id = torch.randint(
                    0,
                    len(self.images),
Ruilong Li's avatar
Ruilong Li committed
169
                    size=(num_rays,),
Ruilong Li's avatar
Ruilong Li committed
170
171
172
173
174
                    device=self.images.device,
                )
            else:
                image_id = [index]
            x = torch.randint(
Ruilong Li's avatar
Ruilong Li committed
175
                0, self.WIDTH, size=(num_rays,), device=self.images.device
Ruilong Li's avatar
Ruilong Li committed
176
177
            )
            y = torch.randint(
Ruilong Li's avatar
Ruilong Li committed
178
                0, self.HEIGHT, size=(num_rays,), device=self.images.device
Ruilong Li's avatar
Ruilong Li committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
            )
        else:
            image_id = [index]
            x, y = torch.meshgrid(
                torch.arange(self.WIDTH, device=self.images.device),
                torch.arange(self.HEIGHT, device=self.images.device),
                indexing="xy",
            )
            x = x.flatten()
            y = y.flatten()

        # generate rays
        rgba = self.images[image_id, y, x] / 255.0  # (num_rays, 4)
        c2w = self.camtoworlds[image_id]  # (num_rays, 3, 4)
        camera_dirs = F.pad(
            torch.stack(
                [
Ruilong Li's avatar
Ruilong Li committed
196
                    (x - self.K[0, 2] + 0.5) / self.K[0, 0],
Ruilong Li's avatar
wtf  
Ruilong Li committed
197
198
199
                    (y - self.K[1, 2] + 0.5)
                    / self.K[1, 1]
                    * (-1.0 if self.OPENGL_CAMERA else 1.0),
Ruilong Li's avatar
Ruilong Li committed
200
201
202
203
                ],
                dim=-1,
            ),
            (0, 1),
Ruilong Li's avatar
Ruilong Li committed
204
            value=(-1.0 if self.OPENGL_CAMERA else 1.0),
Ruilong Li's avatar
Ruilong Li committed
205
206
207
208
209
        )  # [num_rays, 3]

        # [n_cams, height, width, 3]
        directions = (camera_dirs[:, None, :] * c2w[:, :3, :3]).sum(dim=-1)
        origins = torch.broadcast_to(c2w[:, :3, -1], directions.shape)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
210
211
212
        viewdirs = directions / torch.linalg.norm(
            directions, dim=-1, keepdims=True
        )
Ruilong Li's avatar
Ruilong Li committed
213

Ruilong Li's avatar
Ruilong Li committed
214
        if self.training:
Ruilong Li's avatar
Ruilong Li committed
215
216
217
            origins = torch.reshape(origins, (num_rays, 3))
            viewdirs = torch.reshape(viewdirs, (num_rays, 3))
            rgba = torch.reshape(rgba, (num_rays, 4))
Ruilong Li's avatar
Ruilong Li committed
218
        else:
Ruilong Li's avatar
Ruilong Li committed
219
220
221
222
223
            origins = torch.reshape(origins, (self.HEIGHT, self.WIDTH, 3))
            viewdirs = torch.reshape(viewdirs, (self.HEIGHT, self.WIDTH, 3))
            rgba = torch.reshape(rgba, (self.HEIGHT, self.WIDTH, 4))

        rays = Rays(origins=origins, viewdirs=viewdirs)
Ruilong Li's avatar
Ruilong Li committed
224
225
226

        return {
            "rgba": rgba,  # [h, w, 4] or [num_rays, 4]
Ruilong Li's avatar
Ruilong Li committed
227
            "rays": rays,  # [h, w, 3] or [num_rays, 3]
Ruilong Li's avatar
Ruilong Li committed
228
        }