nerf_360_v2.py 11.7 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import collections
import os
import sys

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm

from .utils import Rays

_PATH = os.path.abspath(__file__)

sys.path.insert(
    0, os.path.join(os.path.dirname(_PATH), "..", "pycolmap", "pycolmap")
)
from scene_manager import SceneManager


25
def _load_colmap(root_fp: str, subject_id: str, factor: int = 1):
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    assert factor in [1, 2, 4, 8]

    data_dir = os.path.join(root_fp, subject_id)
    colmap_dir = os.path.join(data_dir, "sparse/0/")

    manager = SceneManager(colmap_dir)
    manager.load_cameras()
    manager.load_images()

    # Assume shared intrinsics between all cameras.
    cam = manager.cameras[1]
    fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
    K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    K[:2, :] /= factor

    # Extract extrinsic matrices in world-to-camera format.
    imdata = manager.images
    w2c_mats = []
    bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
    for k in imdata:
        im = imdata[k]
        rot = im.R()
        trans = im.tvec.reshape(3, 1)
        w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
        w2c_mats.append(w2c)
    w2c_mats = np.stack(w2c_mats, axis=0)

    # Convert extrinsics to camera-to-world.
    camtoworlds = np.linalg.inv(w2c_mats)

    # Image names from COLMAP. No need for permuting the poses according to
    # image names anymore.
    image_names = [imdata[k].name for k in imdata]

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
60
    # # Switch from COLMAP (right, down, fwd) to Nerf (right, up, back) frame.
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    # poses = poses @ np.diag([1, -1, -1, 1])

    # Get distortion parameters.
    type_ = cam.camera_type

    if type_ == 0 or type_ == "SIMPLE_PINHOLE":
        params = None
        camtype = "perspective"

    elif type_ == 1 or type_ == "PINHOLE":
        params = None
        camtype = "perspective"

    if type_ == 2 or type_ == "SIMPLE_RADIAL":
        params = {k: 0.0 for k in ["k1", "k2", "k3", "p1", "p2"]}
        params["k1"] = cam.k1
        camtype = "perspective"

    elif type_ == 3 or type_ == "RADIAL":
        params = {k: 0.0 for k in ["k1", "k2", "k3", "p1", "p2"]}
        params["k1"] = cam.k1
        params["k2"] = cam.k2
        camtype = "perspective"

    elif type_ == 4 or type_ == "OPENCV":
        params = {k: 0.0 for k in ["k1", "k2", "k3", "p1", "p2"]}
        params["k1"] = cam.k1
        params["k2"] = cam.k2
        params["p1"] = cam.p1
        params["p2"] = cam.p2
        camtype = "perspective"

    elif type_ == 5 or type_ == "OPENCV_FISHEYE":
        params = {k: 0.0 for k in ["k1", "k2", "k3", "k4"]}
        params["k1"] = cam.k1
        params["k2"] = cam.k2
        params["k3"] = cam.k3
        params["k4"] = cam.k4
        camtype = "fisheye"

    assert params is None, "Only support pinhole camera model."

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
103
    # Previous Nerf results were generated with images sorted by filename,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    # ensure metrics are reported on the same test set.
    inds = np.argsort(image_names)
    image_names = [image_names[i] for i in inds]
    camtoworlds = camtoworlds[inds]

    # Load images.
    if factor > 1:
        image_dir_suffix = f"_{factor}"
    else:
        image_dir_suffix = ""
    colmap_image_dir = os.path.join(data_dir, "images")
    image_dir = os.path.join(data_dir, "images" + image_dir_suffix)
    for d in [image_dir, colmap_image_dir]:
        if not os.path.exists(d):
            raise ValueError(f"Image folder {d} does not exist.")
    # Downsampled images may have different names vs images used for COLMAP,
    # so we need to map between the two sorted lists of files.
    colmap_files = sorted(os.listdir(colmap_image_dir))
    image_files = sorted(os.listdir(image_dir))
    colmap_to_image = dict(zip(colmap_files, image_files))
    image_paths = [
        os.path.join(image_dir, colmap_to_image[f]) for f in image_names
    ]
    print("loading images")
    images = [imageio.imread(x) for x in tqdm.tqdm(image_paths)]
    images = np.stack(images, axis=0)

    # Select the split.
    all_indices = np.arange(images.shape[0])
    split_indices = {
        "test": all_indices[all_indices % 8 == 0],
        "train": all_indices[all_indices % 8 != 0],
    }
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    return images, camtoworlds, K, split_indices


def similarity_from_cameras(c2w, strict_scaling):
    """
    reference: nerf-factory
    Get a similarity transform to normalize dataset
    from c2w (OpenCV convention) cameras
    :param c2w: (N, 4)
    :return T (4,4) , scale (float)
    """
    t = c2w[:, :3, 3]
    R = c2w[:, :3, :3]

    # (1) Rotate the world so that z+ is the up axis
    # we estimate the up axis by averaging the camera up axes
    ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1)
    world_up = np.mean(ups, axis=0)
    world_up /= np.linalg.norm(world_up)

    up_camspace = np.array([0.0, -1.0, 0.0])
    c = (up_camspace * world_up).sum()
    cross = np.cross(world_up, up_camspace)
    skew = np.array(
        [
            [0.0, -cross[2], cross[1]],
            [cross[2], 0.0, -cross[0]],
            [-cross[1], cross[0], 0.0],
        ]
    )
    if c > -1:
        R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c)
    else:
        # In the unlikely case the original data has y+ up axis,
        # rotate 180-deg about x axis
        R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])

    #  R_align = np.eye(3) # DEBUG
    R = R_align @ R
    fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1)
    t = (R_align @ t[..., None])[..., 0]

    # (2) Recenter the scene using camera center rays
    # find the closest point to the origin for each camera's center ray
    nearest = t + (fwds * -t).sum(-1)[:, None] * fwds

    # median for more robustness
    translate = -np.median(nearest, axis=0)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
185

186
187
188
189
190
191
192
193
194
195
196
    #  translate = -np.mean(t, axis=0)  # DEBUG

    transform = np.eye(4)
    transform[:3, 3] = translate
    transform[:3, :3] = R_align

    # (3) Rescale the scene using camera distances
    scale_fn = np.max if strict_scaling else np.median
    scale = 1.0 / scale_fn(np.linalg.norm(t + translate, axis=-1))

    return transform, scale
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
197
198
199
200
201
202
203
204


class SubjectLoader(torch.utils.data.Dataset):
    """Single subject data loader for training and evaluation."""

    SPLITS = ["train", "test"]
    SUBJECT_IDS = [
        "garden",
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
205
206
207
208
209
210
        "bicycle",
        "bonsai",
        "counter",
        "kitchen",
        "room",
        "stump",
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    ]

    OPENGL_CAMERA = False

    def __init__(
        self,
        subject_id: str,
        root_fp: str,
        split: str,
        color_bkgd_aug: str = "white",
        num_rays: int = None,
        near: float = None,
        far: float = None,
        batch_over_images: bool = True,
        factor: int = 1,
226
        device: str = "cpu",
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    ):
        super().__init__()
        assert split in self.SPLITS, "%s" % split
        assert subject_id in self.SUBJECT_IDS, "%s" % subject_id
        assert color_bkgd_aug in ["white", "black", "random"]
        self.split = split
        self.num_rays = num_rays
        self.near = near
        self.far = far
        self.training = (num_rays is not None) and (
            split in ["train", "trainval"]
        )
        self.color_bkgd_aug = color_bkgd_aug
        self.batch_over_images = batch_over_images
241
242
243
244
245
246
        self.images, self.camtoworlds, self.K, split_indices = _load_colmap(
            root_fp, subject_id, factor
        )
        # normalize the scene
        T, sscale = similarity_from_cameras(
            self.camtoworlds, strict_scaling=False
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
247
        )
248
249
250
251
252
253
254
255
        self.camtoworlds = np.einsum("nij, ki -> nkj", self.camtoworlds, T)
        self.camtoworlds[:, :3, 3] *= sscale
        # split
        indices = split_indices[split]
        self.images = self.images[indices]
        self.camtoworlds = self.camtoworlds[indices]
        # to tensor
        self.images = torch.from_numpy(self.images).to(torch.uint8).to(device)
Jingchen Ye's avatar
Jingchen Ye committed
256
        self.camtoworlds = (
257
            torch.from_numpy(self.camtoworlds).to(torch.float32).to(device)
Jingchen Ye's avatar
Jingchen Ye committed
258
        )
259
        self.K = torch.tensor(self.K).to(torch.float32).to(device)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        self.height, self.width = self.images.shape[1:3]

    def __len__(self):
        return len(self.images)

    @torch.no_grad()
    def __getitem__(self, index):
        data = self.fetch_data(index)
        data = self.preprocess(data)
        return data

    def preprocess(self, data):
        """Process the fetched / cached data with randomness."""
        pixels, rays = data["rgb"], data["rays"]

        if self.training:
            if self.color_bkgd_aug == "random":
                color_bkgd = torch.rand(3, device=self.images.device)
            elif self.color_bkgd_aug == "white":
                color_bkgd = torch.ones(3, device=self.images.device)
            elif self.color_bkgd_aug == "black":
                color_bkgd = torch.zeros(3, device=self.images.device)
        else:
            # just use white during inference
            color_bkgd = torch.ones(3, device=self.images.device)

        return {
            "pixels": pixels,  # [n_rays, 3] or [h, w, 3]
            "rays": rays,  # [n_rays,] or [h, w]
            "color_bkgd": color_bkgd,  # [3,]
            **{k: v for k, v in data.items() if k not in ["rgb", "rays"]},
        }

    def update_num_rays(self, num_rays):
        self.num_rays = num_rays

    def fetch_data(self, index):
        """Fetch the data (it maybe cached for multiple batches)."""
        num_rays = self.num_rays

        if self.training:
            if self.batch_over_images:
                image_id = torch.randint(
                    0,
                    len(self.images),
                    size=(num_rays,),
                    device=self.images.device,
                )
            else:
                image_id = [index]
            x = torch.randint(
                0, self.width, size=(num_rays,), device=self.images.device
            )
            y = torch.randint(
                0, self.height, size=(num_rays,), device=self.images.device
            )
        else:
            image_id = [index]
            x, y = torch.meshgrid(
                torch.arange(self.width, device=self.images.device),
                torch.arange(self.height, device=self.images.device),
                indexing="xy",
            )
            x = x.flatten()
            y = y.flatten()

        # generate rays
        rgb = self.images[image_id, y, x] / 255.0  # (num_rays, 3)
        c2w = self.camtoworlds[image_id]  # (num_rays, 3, 4)
        camera_dirs = F.pad(
            torch.stack(
                [
                    (x - self.K[0, 2] + 0.5) / self.K[0, 0],
                    (y - self.K[1, 2] + 0.5)
                    / self.K[1, 1]
                    * (-1.0 if self.OPENGL_CAMERA else 1.0),
                ],
                dim=-1,
            ),
            (0, 1),
            value=(-1.0 if self.OPENGL_CAMERA else 1.0),
        )  # [num_rays, 3]

343
        # [num_rays, 3]
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        directions = (camera_dirs[:, None, :] * c2w[:, :3, :3]).sum(dim=-1)
        origins = torch.broadcast_to(c2w[:, :3, -1], directions.shape)
        viewdirs = directions / torch.linalg.norm(
            directions, dim=-1, keepdims=True
        )

        if self.training:
            origins = torch.reshape(origins, (num_rays, 3))
            viewdirs = torch.reshape(viewdirs, (num_rays, 3))
            rgb = torch.reshape(rgb, (num_rays, 3))
        else:
            origins = torch.reshape(origins, (self.height, self.width, 3))
            viewdirs = torch.reshape(viewdirs, (self.height, self.width, 3))
            rgb = torch.reshape(rgb, (self.height, self.width, 3))

        rays = Rays(origins=origins, viewdirs=viewdirs)

        return {
            "rgb": rgb,  # [h, w, 3] or [num_rays, 3]
            "rays": rays,  # [h, w, 3] or [num_rays, 3]
        }