train_ngp_nerf_proposal.py 14 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

import argparse
import math
import os
import random
import time
from typing import Optional

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from datasets.utils import Rays, namedtuple_map
from radiance_fields.ngp import NGPradianceField
from utils import set_random_seed

Ruilong Li's avatar
Ruilong Li committed
21
from nerfacc import ContractionType, pack_info, ray_marching, rendering
Ruilong Li's avatar
Ruilong Li committed
22
23
24
25
26
27
28
29
30
from nerfacc.cuda import ray_pdf_query


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


31
# @profile
Ruilong Li's avatar
Ruilong Li committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def render_image(
    # scene
    radiance_field: torch.nn.Module,
    proposal_nets: torch.nn.Module,
    rays: Rays,
    scene_aabb: torch.Tensor,
    # rendering options
    near_plane: Optional[float] = None,
    far_plane: Optional[float] = None,
    render_step_size: float = 1e-3,
    render_bkgd: Optional[torch.Tensor] = None,
    cone_angle: float = 0.0,
    alpha_thre: float = 0.0,
    # test options
    test_chunk_size: int = 8192,
):
    """Render the pixels of an image."""
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(
            lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays
        )
    else:
        num_rays, _ = rays_shape

    def sigma_fn(t_starts, t_ends, ray_indices, net=None):
        ray_indices = ray_indices.long()
        t_origins = chunk_rays.origins[ray_indices]
        t_dirs = chunk_rays.viewdirs[ray_indices]
        positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
        if net is not None:
            return net.query_density(positions)
        else:
            return radiance_field.query_density(positions)

    def rgb_sigma_fn(t_starts, t_ends, ray_indices):
        ray_indices = ray_indices.long()
        t_origins = chunk_rays.origins[ray_indices]
        t_dirs = chunk_rays.viewdirs[ray_indices]
        positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
        return radiance_field(positions, t_dirs)

    results = []
    chunk = (
        torch.iinfo(torch.int32).max
        if radiance_field.training
        else test_chunk_size
    )
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
84
        ray_indices, t_starts, t_ends, proposal_sample_list = ray_marching(
Ruilong Li's avatar
Ruilong Li committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            chunk_rays.origins,
            chunk_rays.viewdirs,
            scene_aabb=scene_aabb,
            grid=None,
            proposal_nets=proposal_nets,
            sigma_fn=sigma_fn,
            near_plane=near_plane,
            far_plane=far_plane,
            render_step_size=render_step_size,
            stratified=radiance_field.training,
            cone_angle=cone_angle,
            alpha_thre=alpha_thre,
        )
        rgb, opacity, depth, weights = rendering(
            t_starts,
            t_ends,
Ruilong Li's avatar
Ruilong Li committed
101
102
103
            ray_indices=ray_indices,
            n_rays=len(chunk_rays.origins),
            rgb_sigma_fn=rgb_sigma_fn,
Ruilong Li's avatar
Ruilong Li committed
104
105
106
            render_bkgd=render_bkgd,
        )
        if radiance_field.training:
Ruilong Li's avatar
Ruilong Li committed
107
            packed_info = pack_info(ray_indices, n_rays=len(chunk_rays.origins))
Ruilong Li's avatar
Ruilong Li committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            proposal_sample_list.append(
                (packed_info, t_starts, t_ends, weights)
            )
        chunk_results = [rgb, opacity, depth, len(t_starts)]
        results.append(chunk_results)
    colors, opacities, depths, n_rendering_samples = [
        torch.cat(r, dim=0) if isinstance(r[0], torch.Tensor) else r
        for r in zip(*results)
    ]
    return (
        colors.view((*rays_shape[:-1], -1)),
        opacities.view((*rays_shape[:-1], -1)),
        depths.view((*rays_shape[:-1], -1)),
        sum(n_rendering_samples),
        proposal_sample_list if radiance_field.training else None,
    )


if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--train_split",
        type=str,
        default="trainval",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # nerf synthetic
            "chair",
            "drums",
            "ficus",
            "hotdog",
            "lego",
            "materials",
            "mic",
            "ship",
            # mipnerf360 unbounded
            "garden",
            "bicycle",
            "bonsai",
            "counter",
            "kitchen",
            "room",
            "stump",
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
173
        default=1024,
Ruilong Li's avatar
Ruilong Li committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    )
    parser.add_argument(
        "--unbounded",
        action="store_true",
        help="whether to use unbounded rendering",
    )
    parser.add_argument(
        "--auto_aabb",
        action="store_true",
        help="whether to automatically compute the aabb",
    )
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 256

    # setup the dataset
    train_dataset_kwargs = {}
    test_dataset_kwargs = {}
    if args.unbounded:
        from datasets.nerf_360_v2 import SubjectLoader

        data_root_fp = "/home/ruilongli/data/360_v2/"
        target_sample_batch_size = 1 << 20
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
    else:
        from datasets.nerf_synthetic import SubjectLoader

        data_root_fp = "/home/ruilongli/data/nerf_synthetic/"
        target_sample_batch_size = 1 << 20

    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split=args.train_split,
Ruilong Li's avatar
Ruilong Li committed
210
        num_rays=target_sample_batch_size // 32,
Ruilong Li's avatar
Ruilong Li committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        **train_dataset_kwargs,
    )

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)

    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split="test",
        num_rays=None,
        **test_dataset_kwargs,
    )
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)

    if args.auto_aabb:
        camera_locs = torch.cat(
            [train_dataset.camtoworlds, test_dataset.camtoworlds]
        )[:, :3, -1]
        args.aabb = torch.cat(
            [camera_locs.min(dim=0).values, camera_locs.max(dim=0).values]
        ).tolist()
        print("Using auto aabb", args.aabb)

    # setup the scene bounding box.
    if args.unbounded:
        print("Using unbounded rendering")
        contraction_type = ContractionType.UN_BOUNDED_SPHERE
        # contraction_type = ContractionType.UN_BOUNDED_TANH
        scene_aabb = None
        near_plane = 0.2
        far_plane = 1e4
        render_step_size = 1e-2
        alpha_thre = 1e-2
    else:
        contraction_type = ContractionType.AABB
        scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
        near_plane = None
        far_plane = None
        render_step_size = (
            (scene_aabb[3:] - scene_aabb[:3]).max()
            * math.sqrt(3)
            / render_n_samples
        ).item()
        alpha_thre = 0.0

    proposal_nets = torch.nn.ModuleList(
        [
            NGPradianceField(
                aabb=args.aabb,
                use_viewdirs=False,
                hidden_dim=16,
                max_res=64,
                geo_feat_dim=0,
268
269
                n_levels=4,
                log2_hashmap_size=19,
Ruilong Li's avatar
Ruilong Li committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            ),
            # NGPradianceField(
            #     aabb=args.aabb,
            #     use_viewdirs=False,
            #     hidden_dim=16,
            #     max_res=256,
            #     geo_feat_dim=0,
            #     n_levels=5,
            #     log2_hashmap_size=17,
            # ),
        ]
    ).to(device)

    # setup the radiance field we want to train.
    max_steps = 20000
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
    radiance_field = NGPradianceField(
        aabb=args.aabb,
        unbounded=args.unbounded,
    ).to(device)
    optimizer = torch.optim.Adam(
        list(radiance_field.parameters()) + list(proposal_nets.parameters()),
        lr=1e-2,
        eps=1e-15,
    )
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[max_steps // 2, max_steps * 3 // 4, max_steps * 9 // 10],
        gamma=0.33,
    )

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
307
308
            proposal_nets.train()

Ruilong Li's avatar
Ruilong Li committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]

            # render
            (
                rgb,
                acc,
                depth,
                n_rendering_samples,
                proposal_sample_list,
            ) = render_image(
                radiance_field,
                proposal_nets,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
                alpha_thre=alpha_thre,
            )
            if n_rendering_samples == 0:
                continue

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            (
                packed_info,
                t_starts,
                t_ends,
                weights,
            ) = proposal_sample_list[-1]
356
            loss_interval = 0.0
Ruilong Li's avatar
Ruilong Li committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            for (
                proposal_packed_info,
                proposal_t_starts,
                proposal_t_ends,
                proposal_weights,
            ) in proposal_sample_list[:-1]:
                proposal_weights_gt = ray_pdf_query(
                    packed_info,
                    t_starts,
                    t_ends,
                    weights.detach(),
                    proposal_packed_info,
                    proposal_t_starts,
                    proposal_t_ends,
                ).detach()

                loss_interval = (
                    torch.clamp(proposal_weights_gt - proposal_weights, min=0)
                ) ** 2 / (proposal_weights + torch.finfo(torch.float32).eps)
                loss_interval = loss_interval.mean()
                loss += loss_interval * 1.0

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

            if step % 100 == 0:
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
                    f"elapsed_time={elapsed_time:.2f}s | step={step} | "
                    f"loss={loss:.5f} | loss_interval={loss_interval:.5f} "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

            if step >= 0 and step % 1000 == 0 and step > 0:
                # evaluation
                radiance_field.eval()
398
                proposal_nets.eval()
Ruilong Li's avatar
Ruilong Li committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]

                        # rendering
                        rgb, acc, depth, _, _ = render_image(
                            radiance_field,
                            proposal_nets,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=near_plane,
                            far_plane=far_plane,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
                            alpha_thre=alpha_thre,
                            # test options
                            test_chunk_size=args.test_chunk_size,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        imageio.imwrite(
                            "acc_binary_test.png",
                            ((acc > 0).float().cpu().numpy() * 255).astype(
                                np.uint8
                            ),
                        )
                        imageio.imwrite(
                            "rgb_test.png",
                            (rgb.cpu().numpy() * 255).astype(np.uint8),
                        )
                        break
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: psnr_avg={psnr_avg}")
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1