train_ngp_nerf_occ.py 8.74 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
import argparse
import math
Jingchen Ye's avatar
Jingchen Ye committed
7
import pathlib
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
8
9
10
11
12
13
14
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
15
16
from lpips import LPIPS
from radiance_fields.ngp import NGPRadianceField
17
18

from examples.utils import (
19
20
    MIPNERF360_UNBOUNDED_SCENES,
    NERF_SYNTHETIC_SCENES,
21
    render_image_with_occgrid,
22
    render_image_with_occgrid_test,
23
24
    set_random_seed,
)
25
from nerfacc.estimators.occ_grid import OccGridEstimator
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
26

Ruilong Li's avatar
Ruilong Li committed
27
28
29
def run(args):
    device = "cuda:0"
    set_random_seed(42)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
30

Ruilong Li's avatar
Ruilong Li committed
31
32
    if args.scene in MIPNERF360_UNBOUNDED_SCENES:
        from datasets.nerf_360_v2 import SubjectLoader
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
33

Ruilong Li's avatar
Ruilong Li committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        # training parameters
        max_steps = 20000
        init_batch_size = 1024
        target_sample_batch_size = 1 << 18
        weight_decay = 0.0
        # scene parameters
        aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=device)
        near_plane = 0.2
        far_plane = 1.0e10
        # dataset parameters
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
        # model parameters
        grid_resolution = 128
        grid_nlvl = 4
        # render parameters
        render_step_size = 1e-3
        alpha_thre = 1e-2
        cone_angle = 0.004
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
53

Ruilong Li's avatar
Ruilong Li committed
54
55
    else:
        from datasets.nerf_synthetic import SubjectLoader
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
56

Ruilong Li's avatar
Ruilong Li committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        # training parameters
        max_steps = 20000
        init_batch_size = 1024
        target_sample_batch_size = 1 << 18
        weight_decay = (
            1e-5 if args.scene in ["materials", "ficus", "drums"] else 1e-6
        )
        # scene parameters
        aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5], device=device)
        near_plane = 0.0
        far_plane = 1.0e10
        # dataset parameters
        train_dataset_kwargs = {}
        test_dataset_kwargs = {}
        # model parameters
        grid_resolution = 128
        grid_nlvl = 1
        # render parameters
        render_step_size = 5e-3
        alpha_thre = 0.0
        cone_angle = 0.0
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
78

Ruilong Li's avatar
Ruilong Li committed
79
80
81
82
83
84
85
    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=args.data_root,
        split=args.train_split,
        num_rays=init_batch_size,
        device=device,
        **train_dataset_kwargs,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
86
87
    )

Ruilong Li's avatar
Ruilong Li committed
88
89
90
91
92
93
94
95
    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=args.data_root,
        split="test",
        num_rays=None,
        device=device,
        **test_dataset_kwargs,
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
96

Ruilong Li's avatar
Ruilong Li committed
97
98
99
    estimator = OccGridEstimator(
        roi_aabb=aabb, resolution=grid_resolution, levels=grid_nlvl
    ).to(device)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
100

Ruilong Li's avatar
Ruilong Li committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    # setup the radiance field we want to train.
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
    radiance_field = NGPRadianceField(aabb=estimator.aabbs[-1]).to(device)
    optimizer = torch.optim.Adam(
        radiance_field.parameters(), lr=1e-2, eps=1e-15, weight_decay=weight_decay
    )
    scheduler = torch.optim.lr_scheduler.ChainedScheduler(
        [
            torch.optim.lr_scheduler.LinearLR(
                optimizer, start_factor=0.01, total_iters=100
            ),
            torch.optim.lr_scheduler.MultiStepLR(
                optimizer,
                milestones=[
                    max_steps // 2,
                    max_steps * 3 // 4,
                    max_steps * 9 // 10,
                ],
                gamma=0.33,
            ),
        ]
    )
    lpips_net = LPIPS(net="vgg").to(device)
    lpips_norm_fn = lambda x: x[None, ...].permute(0, 3, 1, 2) * 2 - 1
    lpips_fn = lambda x, y: lpips_net(lpips_norm_fn(x), lpips_norm_fn(y)).mean()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
126

Ruilong Li's avatar
Ruilong Li committed
127
128
129
130
131
    # training
    tic = time.time()
    for step in range(max_steps + 1):
        radiance_field.train()
        estimator.train()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
132

Ruilong Li's avatar
Ruilong Li committed
133
134
        i = torch.randint(0, len(train_dataset), (1,)).item()
        data = train_dataset[i]
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
135

Ruilong Li's avatar
Ruilong Li committed
136
137
138
        render_bkgd = data["color_bkgd"]
        rays = data["rays"]
        pixels = data["pixels"]
139

Ruilong Li's avatar
Ruilong Li committed
140
141
142
        def occ_eval_fn(x):
            density = radiance_field.query_density(x)
            return density * render_step_size
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
143

Ruilong Li's avatar
Ruilong Li committed
144
145
146
147
148
149
        # update occupancy grid
        estimator.update_every_n_steps(
            step=step,
            occ_eval_fn=occ_eval_fn,
            occ_thre=1e-2,
        )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
150

Ruilong Li's avatar
Ruilong Li committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        # render
        rgb, acc, depth, n_rendering_samples = render_image_with_occgrid(
            radiance_field,
            estimator,
            rays,
            # rendering options
            near_plane=near_plane,
            render_step_size=render_step_size,
            render_bkgd=render_bkgd,
            cone_angle=cone_angle,
            alpha_thre=alpha_thre,
        )
        if n_rendering_samples == 0:
            continue
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
165

Ruilong Li's avatar
Ruilong Li committed
166
167
168
169
170
171
172
        if target_sample_batch_size > 0:
            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
173

Ruilong Li's avatar
Ruilong Li committed
174
175
        # compute loss
        loss = F.smooth_l1_loss(rgb, pixels)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
176

Ruilong Li's avatar
Ruilong Li committed
177
178
179
180
181
        optimizer.zero_grad()
        # do not unscale it because we are using Adam.
        grad_scaler.scale(loss).backward()
        optimizer.step()
        scheduler.step()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
182

Ruilong Li's avatar
Ruilong Li committed
183
184
185
186
187
188
189
190
191
192
        if step % 10000 == 0:
            elapsed_time = time.time() - tic
            loss = F.mse_loss(rgb, pixels)
            psnr = -10.0 * torch.log(loss) / np.log(10.0)
            print(
                f"elapsed_time={elapsed_time:.2f}s | step={step} | "
                f"loss={loss:.5f} | psnr={psnr:.2f} | "
                f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} | "
                f"max_depth={depth.max():.3f} | "
            )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
193

Ruilong Li's avatar
Ruilong Li committed
194
195
196
197
198
199
200
201
202
203
204
205
206
        if step > 0 and step % max_steps == 0:
            # evaluation
            radiance_field.eval()
            estimator.eval()

            psnrs = []
            lpips = []
            with torch.no_grad():
                for i in tqdm.tqdm(range(len(test_dataset))):
                    data = test_dataset[i]
                    render_bkgd = data["color_bkgd"]
                    rays = data["rays"]
                    pixels = data["pixels"]
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
207

Ruilong Li's avatar
Ruilong Li committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                    # rendering
                    # rgb, acc, depth, _ = render_image_with_occgrid_test(
                    #     1024,
                    #     # scene
                    #     radiance_field,
                    #     estimator,
                    #     rays,
                    #     # rendering options
                    #     near_plane=near_plane,
                    #     render_step_size=render_step_size,
                    #     render_bkgd=render_bkgd,
                    #     cone_angle=cone_angle,
                    #     alpha_thre=alpha_thre,
                    # )
                    rgb, acc, depth, _ = render_image_with_occgrid(
                        radiance_field,
                        estimator,
                        rays,
                        # rendering options
                        near_plane=near_plane,
                        render_step_size=render_step_size,
                        render_bkgd=render_bkgd,
                        cone_angle=cone_angle,
                        alpha_thre=alpha_thre,
                    )
                    mse = F.mse_loss(rgb, pixels)
                    psnr = -10.0 * torch.log(mse) / np.log(10.0)
                    psnrs.append(psnr.item())
                    lpips.append(lpips_fn(rgb, pixels).item())
                    # if i == 0:
                    #     imageio.imwrite(
                    #         "rgb_test.png",
                    #         (rgb.cpu().numpy() * 255).astype(np.uint8),
                    #     )
                    #     imageio.imwrite(
                    #         "rgb_error.png",
                    #         (
                    #             (rgb - pixels).norm(dim=-1).cpu().numpy() * 255
                    #         ).astype(np.uint8),
                    #     )
            psnr_avg = sum(psnrs) / len(psnrs)
            lpips_avg = sum(lpips) / len(lpips)
            print(f"evaluation: psnr_avg={psnr_avg}, lpips_avg={lpips_avg}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
251

Ruilong Li's avatar
Ruilong Li committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_root",
        type=str,
        # default=str(pathlib.Path.cwd() / "data/360_v2"),
        default=str(pathlib.Path.cwd() / "data/nerf_synthetic"),
        help="the root dir of the dataset",
    )
    parser.add_argument(
        "--train_split",
        type=str,
        default="train",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=NERF_SYNTHETIC_SCENES + MIPNERF360_UNBOUNDED_SCENES,
        help="which scene to use",
    )
    args = parser.parse_args()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
276

Ruilong Li's avatar
Ruilong Li committed
277
    run(args)