train_mlp_dnerf.py 7.55 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
import argparse
import math
Jingchen Ye's avatar
Jingchen Ye committed
7
import pathlib
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from datasets.dnerf_synthetic import SubjectLoader
from radiance_fields.mlp import DNeRFRadianceField
from utils import render_image, set_random_seed

from nerfacc import ContractionType, OccupancyGrid

if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
Jingchen Ye's avatar
Jingchen Ye committed
27
28
29
30
31
32
    parser.add_argument(
        "--data_root",
        type=str,
        default=str(pathlib.Path.cwd() / "data/dnerf"),
        help="the root dir of the dataset",
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    parser.add_argument(
        "--train_split",
        type=str,
        default="train",
        choices=["train"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # dnerf
            "bouncingballs",
            "hellwarrior",
            "hook",
            "jumpingjacks",
            "lego",
            "mutant",
            "standup",
            "trex",
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
        default=8192,
    )
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 1024

    # setup the scene bounding box.
    contraction_type = ContractionType.AABB
    scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
    near_plane = None
    far_plane = None
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max()
        * math.sqrt(3)
        / render_n_samples
    ).item()

    # setup the radiance field we want to train.
85
    max_steps = 30000
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
86
87
88
89
90
    grad_scaler = torch.cuda.amp.GradScaler(1)
    radiance_field = DNeRFRadianceField().to(device)
    optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
91
92
93
94
95
96
        milestones=[
            max_steps // 2,
            max_steps * 3 // 4,
            max_steps * 5 // 6,
            max_steps * 9 // 10,
        ],
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
97
98
99
100
101
102
103
104
        gamma=0.33,
    )
    # setup the dataset
    target_sample_batch_size = 1 << 16
    grid_resolution = 128

    train_dataset = SubjectLoader(
        subject_id=args.scene,
Jingchen Ye's avatar
Jingchen Ye committed
105
        root_fp=args.data_root,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
106
107
108
109
110
111
        split=args.train_split,
        num_rays=target_sample_batch_size // render_n_samples,
    )

    test_dataset = SubjectLoader(
        subject_id=args.scene,
Jingchen Ye's avatar
Jingchen Ye committed
112
        root_fp=args.data_root,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        split="test",
        num_rays=None,
    )

    occupancy_grid = OccupancyGrid(
        roi_aabb=args.aabb,
        resolution=grid_resolution,
        contraction_type=contraction_type,
    ).to(device)

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
            timestamps = data["timestamps"]

            # update occupancy grid
            occupancy_grid.every_n_step(
                step=step,
                occ_eval_fn=lambda x: radiance_field.query_opacity(
                    x, timestamps, render_step_size
                ),
            )

            # render
            rgb, acc, depth, n_rendering_samples = render_image(
                radiance_field,
                occupancy_grid,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
156
                alpha_thre=0.01 if step > 1000 else 0.00,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
157
158
159
                # dnerf options
                timestamps=timestamps,
            )
160
161
            if n_rendering_samples == 0:
                continue
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

Ruilong Li's avatar
Ruilong Li committed
181
            if step % 5000 == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
182
183
184
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
Matthew Tancik's avatar
Matthew Tancik committed
185
                    f"elapsed_time={elapsed_time:.2f}s | step={step} | "
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
186
187
188
189
190
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

Jingchen Ye's avatar
Jingchen Ye committed
191
            if step > 0 and step % max_steps == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                # evaluation
                radiance_field.eval()

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]
                        timestamps = data["timestamps"]

                        # rendering
                        rgb, acc, depth, _ = render_image(
                            radiance_field,
                            occupancy_grid,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=None,
                            far_plane=None,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
216
                            alpha_thre=0.01,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                            # test options
                            test_chunk_size=args.test_chunk_size,
                            # dnerf options
                            timestamps=timestamps,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        # imageio.imwrite(
                        #     "acc_binary_test.png",
                        #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # imageio.imwrite(
                        #     "rgb_test.png",
                        #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # break
                psnr_avg = sum(psnrs) / len(psnrs)
Matthew Tancik's avatar
Matthew Tancik committed
235
                print(f"evaluation: psnr_avg={psnr_avg}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
236
237
238
239
240
241
242
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1