"tests/test_models/test_backbones/test_cylinder3d_backbone.py" did not exist on "afa4479cb70eb3d2627436ac7d9ecbadc2029b54"
train_ngp_nerf_prop.py 8.67 KB
Newer Older
1
2
3
4
5
6
7
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""
import argparse
import itertools
import pathlib
import time
8
from typing import Callable
9
10
11
12
13
14
15
16

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from lpips import LPIPS
from radiance_fields.ngp import NGPDensityField, NGPRadianceField
17
18

from examples.utils import (
19
20
    MIPNERF360_UNBOUNDED_SCENES,
    NERF_SYNTHETIC_SCENES,
21
    render_image_with_propnet,
22
23
    set_random_seed,
)
24
25
from nerfacc.estimators.prop_net import (
    PropNetEstimator,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    get_proposal_requires_grad_fn,
)

parser = argparse.ArgumentParser()
parser.add_argument(
    "--data_root",
    type=str,
    # default=str(pathlib.Path.cwd() / "data/360_v2"),
    default=str(pathlib.Path.cwd() / "data/nerf_synthetic"),
    help="the root dir of the dataset",
)
parser.add_argument(
    "--train_split",
    type=str,
    default="train",
    choices=["train", "trainval"],
    help="which train split to use",
)
parser.add_argument(
    "--scene",
    type=str,
    default="lego",
    choices=NERF_SYNTHETIC_SCENES + MIPNERF360_UNBOUNDED_SCENES,
    help="which scene to use",
)
parser.add_argument(
    "--test_chunk_size",
    type=int,
    default=8192,
)
args = parser.parse_args()

device = "cuda:0"
set_random_seed(42)

if args.scene in MIPNERF360_UNBOUNDED_SCENES:
    from datasets.nerf_360_v2 import SubjectLoader

    # training parameters
Ruilong Li's avatar
Ruilong Li committed
65
    max_steps = 20000
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    init_batch_size = 4096
    weight_decay = 0.0
    # scene parameters
    unbounded = True
    aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=device)
    near_plane = 0.2  # TODO: Try 0.02
    far_plane = 1e3
    # dataset parameters
    train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
    test_dataset_kwargs = {"factor": 4}
    # model parameters
    proposal_networks = [
        NGPDensityField(
            aabb=aabb,
            unbounded=unbounded,
            n_levels=5,
            max_resolution=128,
        ).to(device),
        NGPDensityField(
            aabb=aabb,
            unbounded=unbounded,
            n_levels=5,
            max_resolution=256,
        ).to(device),
    ]
    # render parameters
    num_samples = 48
    num_samples_per_prop = [256, 96]
    sampling_type = "lindisp"
    opaque_bkgd = True

else:
    from datasets.nerf_synthetic import SubjectLoader

    # training parameters
    max_steps = 20000
    init_batch_size = 4096
    weight_decay = (
        1e-5 if args.scene in ["materials", "ficus", "drums"] else 1e-6
    )
    # scene parameters
    unbounded = False
    aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5], device=device)
    near_plane = 2.0
    far_plane = 6.0
    # dataset parameters
    train_dataset_kwargs = {}
    test_dataset_kwargs = {}
    # model parameters
    proposal_networks = [
        NGPDensityField(
            aabb=aabb,
            unbounded=unbounded,
            n_levels=5,
            max_resolution=128,
        ).to(device),
    ]
    # render parameters
    num_samples = 64
    num_samples_per_prop = [128]
    sampling_type = "uniform"
    opaque_bkgd = False

train_dataset = SubjectLoader(
    subject_id=args.scene,
    root_fp=args.data_root,
    split=args.train_split,
    num_rays=init_batch_size,
    device=device,
    **train_dataset_kwargs,
)

test_dataset = SubjectLoader(
    subject_id=args.scene,
    root_fp=args.data_root,
    split="test",
    num_rays=None,
    device=device,
    **test_dataset_kwargs,
)

# setup the radiance field we want to train.
148
prop_optimizer = torch.optim.Adam(
149
150
151
152
153
154
155
    itertools.chain(
        *[p.parameters() for p in proposal_networks],
    ),
    lr=1e-2,
    eps=1e-15,
    weight_decay=weight_decay,
)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
prop_scheduler = torch.optim.lr_scheduler.ChainedScheduler(
    [
        torch.optim.lr_scheduler.LinearLR(
            prop_optimizer, start_factor=0.01, total_iters=100
        ),
        torch.optim.lr_scheduler.MultiStepLR(
            prop_optimizer,
            milestones=[
                max_steps // 2,
                max_steps * 3 // 4,
                max_steps * 9 // 10,
            ],
            gamma=0.33,
        ),
    ]
)
estimator = PropNetEstimator(prop_optimizer, prop_scheduler).to(device)

grad_scaler = torch.cuda.amp.GradScaler(2**10)
radiance_field = NGPRadianceField(aabb=aabb, unbounded=unbounded).to(device)
optimizer = torch.optim.Adam(
    radiance_field.parameters(),
    lr=1e-2,
    eps=1e-15,
    weight_decay=weight_decay,
)
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
scheduler = torch.optim.lr_scheduler.ChainedScheduler(
    [
        torch.optim.lr_scheduler.LinearLR(
            optimizer, start_factor=0.01, total_iters=100
        ),
        torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[
                max_steps // 2,
                max_steps * 3 // 4,
                max_steps * 9 // 10,
            ],
            gamma=0.33,
        ),
    ]
)
proposal_requires_grad_fn = get_proposal_requires_grad_fn()
199
# proposal_annealing_fn = get_proposal_annealing_fn()
200
201
202
203
204
205
206
207
208
209
210

lpips_net = LPIPS(net="vgg").to(device)
lpips_norm_fn = lambda x: x[None, ...].permute(0, 3, 1, 2) * 2 - 1
lpips_fn = lambda x, y: lpips_net(lpips_norm_fn(x), lpips_norm_fn(y)).mean()

# training
tic = time.time()
for step in range(max_steps + 1):
    radiance_field.train()
    for p in proposal_networks:
        p.train()
211
    estimator.train()
212
213
214
215
216
217
218
219

    i = torch.randint(0, len(train_dataset), (1,)).item()
    data = train_dataset[i]

    render_bkgd = data["color_bkgd"]
    rays = data["rays"]
    pixels = data["pixels"]

220
    proposal_requires_grad = proposal_requires_grad_fn(step)
221
    # render
222
    rgb, acc, depth, extras = render_image_with_propnet(
223
224
        radiance_field,
        proposal_networks,
225
        estimator,
226
227
228
229
230
231
232
233
234
235
        rays,
        # rendering options
        num_samples=num_samples,
        num_samples_per_prop=num_samples_per_prop,
        near_plane=near_plane,
        far_plane=far_plane,
        sampling_type=sampling_type,
        opaque_bkgd=opaque_bkgd,
        render_bkgd=render_bkgd,
        # train options
236
237
238
239
        proposal_requires_grad=proposal_requires_grad,
    )
    estimator.update_every_n_steps(
        extras["trans"], proposal_requires_grad, loss_scaler=1024
240
241
242
243
244
245
246
247
248
249
250
    )

    # compute loss
    loss = F.smooth_l1_loss(rgb, pixels)

    optimizer.zero_grad()
    # do not unscale it because we are using Adam.
    grad_scaler.scale(loss).backward()
    optimizer.step()
    scheduler.step()

251
    if step % 10000 == 0:
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        elapsed_time = time.time() - tic
        loss = F.mse_loss(rgb, pixels)
        psnr = -10.0 * torch.log(loss) / np.log(10.0)
        print(
            f"elapsed_time={elapsed_time:.2f}s | step={step} | "
            f"loss={loss:.5f} | psnr={psnr:.2f} | "
            f"num_rays={len(pixels):d} | "
            f"max_depth={depth.max():.3f} | "
        )

    if step > 0 and step % max_steps == 0:
        # evaluation
        radiance_field.eval()
        for p in proposal_networks:
            p.eval()
267
        estimator.eval()
268
269
270
271
272
273
274
275
276
277
278

        psnrs = []
        lpips = []
        with torch.no_grad():
            for i in tqdm.tqdm(range(len(test_dataset))):
                data = test_dataset[i]
                render_bkgd = data["color_bkgd"]
                rays = data["rays"]
                pixels = data["pixels"]

                # rendering
Ruilong Li's avatar
format  
Ruilong Li committed
279
                (rgb, acc, depth, _,) = render_image_with_propnet(
280
281
                    radiance_field,
                    proposal_networks,
282
                    estimator,
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                    rays,
                    # rendering options
                    num_samples=num_samples,
                    num_samples_per_prop=num_samples_per_prop,
                    near_plane=near_plane,
                    far_plane=far_plane,
                    sampling_type=sampling_type,
                    opaque_bkgd=opaque_bkgd,
                    render_bkgd=render_bkgd,
                    # test options
                    test_chunk_size=args.test_chunk_size,
                )
                mse = F.mse_loss(rgb, pixels)
                psnr = -10.0 * torch.log(mse) / np.log(10.0)
                psnrs.append(psnr.item())
                lpips.append(lpips_fn(rgb, pixels).item())
                # if i == 0:
                #     imageio.imwrite(
                #         "rgb_test.png",
                #         (rgb.cpu().numpy() * 255).astype(np.uint8),
                #     )
                #     imageio.imwrite(
                #         "rgb_error.png",
                #         (
                #             (rgb - pixels).norm(dim=-1).cpu().numpy() * 255
                #         ).astype(np.uint8),
                #     )
310
                #     break
311
312
313
        psnr_avg = sum(psnrs) / len(psnrs)
        lpips_avg = sum(lpips) / len(lpips)
        print(f"evaluation: psnr_avg={psnr_avg}, lpips_avg={lpips_avg}")