"backends/client/src/v3/client.rs" did not exist on "39af000cb9bfa12628c21c6e65d3ce8930250171"
train_ngp_nerf_proposal.py 13.8 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

import argparse
import math
import os
import random
import time
from typing import Optional

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from datasets.utils import Rays, namedtuple_map
from radiance_fields.ngp import NGPradianceField
from utils import set_random_seed

from nerfacc import ContractionType, ray_marching, rendering
from nerfacc.cuda import ray_pdf_query


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


def render_image(
    # scene
    radiance_field: torch.nn.Module,
    proposal_nets: torch.nn.Module,
    rays: Rays,
    scene_aabb: torch.Tensor,
    # rendering options
    near_plane: Optional[float] = None,
    far_plane: Optional[float] = None,
    render_step_size: float = 1e-3,
    render_bkgd: Optional[torch.Tensor] = None,
    cone_angle: float = 0.0,
    alpha_thre: float = 0.0,
    # test options
    test_chunk_size: int = 8192,
):
    """Render the pixels of an image."""
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(
            lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays
        )
    else:
        num_rays, _ = rays_shape

    def sigma_fn(t_starts, t_ends, ray_indices, net=None):
        ray_indices = ray_indices.long()
        t_origins = chunk_rays.origins[ray_indices]
        t_dirs = chunk_rays.viewdirs[ray_indices]
        positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
        if net is not None:
            return net.query_density(positions)
        else:
            return radiance_field.query_density(positions)

    def rgb_sigma_fn(t_starts, t_ends, ray_indices):
        ray_indices = ray_indices.long()
        t_origins = chunk_rays.origins[ray_indices]
        t_dirs = chunk_rays.viewdirs[ray_indices]
        positions = t_origins + t_dirs * (t_starts + t_ends) / 2.0
        return radiance_field(positions, t_dirs)

    results = []
    chunk = (
        torch.iinfo(torch.int32).max
        if radiance_field.training
        else test_chunk_size
    )
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
        packed_info, t_starts, t_ends, proposal_sample_list = ray_marching(
            chunk_rays.origins,
            chunk_rays.viewdirs,
            scene_aabb=scene_aabb,
            grid=None,
            proposal_nets=proposal_nets,
            sigma_fn=sigma_fn,
            near_plane=near_plane,
            far_plane=far_plane,
            render_step_size=render_step_size,
            stratified=radiance_field.training,
            cone_angle=cone_angle,
            alpha_thre=alpha_thre,
        )
        rgb, opacity, depth, weights = rendering(
            rgb_sigma_fn,
            packed_info,
            t_starts,
            t_ends,
            render_bkgd=render_bkgd,
        )
        if radiance_field.training:
            proposal_sample_list.append(
                (packed_info, t_starts, t_ends, weights)
            )
        chunk_results = [rgb, opacity, depth, len(t_starts)]
        results.append(chunk_results)
    colors, opacities, depths, n_rendering_samples = [
        torch.cat(r, dim=0) if isinstance(r[0], torch.Tensor) else r
        for r in zip(*results)
    ]
    return (
        colors.view((*rays_shape[:-1], -1)),
        opacities.view((*rays_shape[:-1], -1)),
        depths.view((*rays_shape[:-1], -1)),
        sum(n_rendering_samples),
        proposal_sample_list if radiance_field.training else None,
    )


if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--train_split",
        type=str,
        default="trainval",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # nerf synthetic
            "chair",
            "drums",
            "ficus",
            "hotdog",
            "lego",
            "materials",
            "mic",
            "ship",
            # mipnerf360 unbounded
            "garden",
            "bicycle",
            "bonsai",
            "counter",
            "kitchen",
            "room",
            "stump",
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
        default=8192,
    )
    parser.add_argument(
        "--unbounded",
        action="store_true",
        help="whether to use unbounded rendering",
    )
    parser.add_argument(
        "--auto_aabb",
        action="store_true",
        help="whether to automatically compute the aabb",
    )
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 256

    # setup the dataset
    train_dataset_kwargs = {}
    test_dataset_kwargs = {}
    if args.unbounded:
        from datasets.nerf_360_v2 import SubjectLoader

        data_root_fp = "/home/ruilongli/data/360_v2/"
        target_sample_batch_size = 1 << 20
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
    else:
        from datasets.nerf_synthetic import SubjectLoader

        data_root_fp = "/home/ruilongli/data/nerf_synthetic/"
        target_sample_batch_size = 1 << 20

    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split=args.train_split,
Ruilong Li's avatar
Ruilong Li committed
207
        num_rays=target_sample_batch_size // 32,
Ruilong Li's avatar
Ruilong Li committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        **train_dataset_kwargs,
    )

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)

    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split="test",
        num_rays=None,
        **test_dataset_kwargs,
    )
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)

    if args.auto_aabb:
        camera_locs = torch.cat(
            [train_dataset.camtoworlds, test_dataset.camtoworlds]
        )[:, :3, -1]
        args.aabb = torch.cat(
            [camera_locs.min(dim=0).values, camera_locs.max(dim=0).values]
        ).tolist()
        print("Using auto aabb", args.aabb)

    # setup the scene bounding box.
    if args.unbounded:
        print("Using unbounded rendering")
        contraction_type = ContractionType.UN_BOUNDED_SPHERE
        # contraction_type = ContractionType.UN_BOUNDED_TANH
        scene_aabb = None
        near_plane = 0.2
        far_plane = 1e4
        render_step_size = 1e-2
        alpha_thre = 1e-2
    else:
        contraction_type = ContractionType.AABB
        scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
        near_plane = None
        far_plane = None
        render_step_size = (
            (scene_aabb[3:] - scene_aabb[:3]).max()
            * math.sqrt(3)
            / render_n_samples
        ).item()
        alpha_thre = 0.0

    proposal_nets = torch.nn.ModuleList(
        [
            NGPradianceField(
                aabb=args.aabb,
                use_viewdirs=False,
                hidden_dim=16,
                max_res=64,
                geo_feat_dim=0,
Ruilong Li's avatar
Ruilong Li committed
265
                n_levels=2,
Ruilong Li's avatar
Ruilong Li committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
                log2_hashmap_size=17,
            ),
            # NGPradianceField(
            #     aabb=args.aabb,
            #     use_viewdirs=False,
            #     hidden_dim=16,
            #     max_res=256,
            #     geo_feat_dim=0,
            #     n_levels=5,
            #     log2_hashmap_size=17,
            # ),
        ]
    ).to(device)

    # setup the radiance field we want to train.
    max_steps = 20000
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
    radiance_field = NGPradianceField(
        aabb=args.aabb,
        unbounded=args.unbounded,
    ).to(device)
    optimizer = torch.optim.Adam(
        list(radiance_field.parameters()) + list(proposal_nets.parameters()),
        lr=1e-2,
        eps=1e-15,
    )
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[max_steps // 2, max_steps * 3 // 4, max_steps * 9 // 10],
        gamma=0.33,
    )

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]

            # render
            (
                rgb,
                acc,
                depth,
                n_rendering_samples,
                proposal_sample_list,
            ) = render_image(
                radiance_field,
                proposal_nets,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
                alpha_thre=alpha_thre,
            )
            if n_rendering_samples == 0:
                continue

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            (
                packed_info,
                t_starts,
                t_ends,
                weights,
            ) = proposal_sample_list[-1]
            for (
                proposal_packed_info,
                proposal_t_starts,
                proposal_t_ends,
                proposal_weights,
            ) in proposal_sample_list[:-1]:
                proposal_weights_gt = ray_pdf_query(
                    packed_info,
                    t_starts,
                    t_ends,
                    weights.detach(),
                    proposal_packed_info,
                    proposal_t_starts,
                    proposal_t_ends,
                ).detach()
                torch.cuda.synchronize()

                loss_interval = (
                    torch.clamp(proposal_weights_gt - proposal_weights, min=0)
                ) ** 2 / (proposal_weights + torch.finfo(torch.float32).eps)
                loss_interval = loss_interval.mean()
                loss += loss_interval * 1.0

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

            if step % 100 == 0:
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
                    f"elapsed_time={elapsed_time:.2f}s | step={step} | "
                    f"loss={loss:.5f} | loss_interval={loss_interval:.5f} "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

            if step >= 0 and step % 1000 == 0 and step > 0:
                # evaluation
                radiance_field.eval()

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]

                        # rendering
                        rgb, acc, depth, _, _ = render_image(
                            radiance_field,
                            proposal_nets,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=near_plane,
                            far_plane=far_plane,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
                            alpha_thre=alpha_thre,
                            # test options
                            test_chunk_size=args.test_chunk_size,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        imageio.imwrite(
                            "acc_binary_test.png",
                            ((acc > 0).float().cpu().numpy() * 255).astype(
                                np.uint8
                            ),
                        )
                        imageio.imwrite(
                            "rgb_test.png",
                            (rgb.cpu().numpy() * 255).astype(np.uint8),
                        )
                        break
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: psnr_avg={psnr_avg}")
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1