train_ngp_nerf.py 8.93 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import math
import os
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from radiance_fields.ngp import NGPradianceField
from utils import render_image, set_random_seed

from nerfacc import ContractionType, OccupancyGrid

if __name__ == "__main__":

    device = "cuda:0"
    set_random_seed(42)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--train_split",
        type=str,
        default="trainval",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=[
            # nerf synthetic
            "chair",
            "drums",
            "ficus",
            "hotdog",
            "lego",
            "materials",
            "mic",
            "ship",
            # mipnerf360 unbounded
            "garden",
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
49
50
51
52
53
54
            "bicycle",
            "bonsai",
            "counter",
            "kitchen",
            "room",
            "stump",
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        ],
        help="which scene to use",
    )
    parser.add_argument(
        "--aabb",
        type=lambda s: [float(item) for item in s.split(",")],
        default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
        help="delimited list input",
    )
    parser.add_argument(
        "--test_chunk_size",
        type=int,
        default=8192,
    )
    parser.add_argument(
        "--unbounded",
        action="store_true",
        help="whether to use unbounded rendering",
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
74
75
76
77
78
    parser.add_argument(
        "--auto_aabb",
        action="store_true",
        help="whether to automatically compute the aabb",
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
79
80
81
82
83
84
85
86
    parser.add_argument("--cone_angle", type=float, default=0.0)
    args = parser.parse_args()

    render_n_samples = 1024

    # setup the dataset
    train_dataset_kwargs = {}
    test_dataset_kwargs = {}
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
87
    if args.unbounded:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
88
89
90
91
92
93
        from datasets.nerf_360_v2 import SubjectLoader

        data_root_fp = "/home/ruilongli/data/360_v2/"
        target_sample_batch_size = 1 << 20
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
94
        grid_resolution = 256
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    else:
        from datasets.nerf_synthetic import SubjectLoader

        data_root_fp = "/home/ruilongli/data/nerf_synthetic/"
        target_sample_batch_size = 1 << 18
        grid_resolution = 128

    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split=args.train_split,
        num_rays=target_sample_batch_size // render_n_samples,
        **train_dataset_kwargs,
    )

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)

    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=data_root_fp,
        split="test",
        num_rays=None,
        **test_dataset_kwargs,
    )
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    if args.auto_aabb:
        camera_locs = torch.cat(
            [train_dataset.camtoworlds, test_dataset.camtoworlds]
        )[:, :3, -1]
        args.aabb = torch.cat(
            [camera_locs.min(dim=0).values, camera_locs.max(dim=0).values]
        ).tolist()
        print("Using auto aabb", args.aabb)

    # setup the scene bounding box.
    if args.unbounded:
        print("Using unbounded rendering")
        contraction_type = ContractionType.UN_BOUNDED_SPHERE
        # contraction_type = ContractionType.UN_BOUNDED_TANH
        scene_aabb = None
        near_plane = 0.2
        far_plane = 1e4
        render_step_size = 1e-2
    else:
        contraction_type = ContractionType.AABB
        scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
        near_plane = None
        far_plane = None
        render_step_size = (
            (scene_aabb[3:] - scene_aabb[:3]).max()
            * math.sqrt(3)
            / render_n_samples
        ).item()

    # setup the radiance field we want to train.
    max_steps = 40000 if args.unbounded else 20000
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
    radiance_field = NGPradianceField(
        aabb=args.aabb,
        unbounded=args.unbounded,
    ).to(device)
    optimizer = torch.optim.Adam(
        radiance_field.parameters(), lr=1e-2, eps=1e-15
    )
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[max_steps // 2, max_steps * 3 // 4, max_steps * 9 // 10],
        gamma=0.33,
    )

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    occupancy_grid = OccupancyGrid(
        roi_aabb=args.aabb,
        resolution=grid_resolution,
        contraction_type=contraction_type,
    ).to(device)

    # training
    step = 0
    tic = time.time()
    for epoch in range(10000000):
        for i in range(len(train_dataset)):
            radiance_field.train()
            data = train_dataset[i]

            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]

            # update occupancy grid
            occupancy_grid.every_n_step(
                step=step,
                occ_eval_fn=lambda x: radiance_field.query_opacity(
                    x, render_step_size
                ),
            )

            # render
            rgb, acc, depth, n_rendering_samples = render_image(
                radiance_field,
                occupancy_grid,
                rays,
                scene_aabb,
                # rendering options
                near_plane=near_plane,
                far_plane=far_plane,
                render_step_size=render_step_size,
                render_bkgd=render_bkgd,
                cone_angle=args.cone_angle,
            )

            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
            )
            train_dataset.update_num_rays(num_rays)
            alive_ray_mask = acc.squeeze(-1) > 0

            # compute loss
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])

            optimizer.zero_grad()
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
            optimizer.step()
            scheduler.step()

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
228
            if step % 10000 == 0:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                elapsed_time = time.time() - tic
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
                print(
                    f"elapsed_time={elapsed_time:.2f}s | {step=} | "
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} |"
                )

            if step >= 0 and step % max_steps == 0 and step > 0:
                # evaluation
                radiance_field.eval()

                psnrs = []
                with torch.no_grad():
                    for i in tqdm.tqdm(range(len(test_dataset))):
                        data = test_dataset[i]
                        render_bkgd = data["color_bkgd"]
                        rays = data["rays"]
                        pixels = data["pixels"]

                        # rendering
                        rgb, acc, depth, _ = render_image(
                            radiance_field,
                            occupancy_grid,
                            rays,
                            scene_aabb,
                            # rendering options
                            near_plane=None,
                            far_plane=None,
                            render_step_size=render_step_size,
                            render_bkgd=render_bkgd,
                            cone_angle=args.cone_angle,
                            # test options
                            test_chunk_size=args.test_chunk_size,
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                        # imageio.imwrite(
                        #     "acc_binary_test.png",
                        #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # imageio.imwrite(
                        #     "rgb_test.png",
                        #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                        # )
                        # break
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
                train_dataset.training = True

            if step == max_steps:
                print("training stops")
                exit()

            step += 1