train_ngp_nerf_occ.py 9.5 KB
Newer Older
1
2
3
4
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
5
6
import argparse
import math
Jingchen Ye's avatar
Jingchen Ye committed
7
import pathlib
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
8
9
10
11
12
13
14
import time

import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
15
16
from lpips import LPIPS
from radiance_fields.ngp import NGPRadianceField
17
18

from examples.utils import (
19
20
    MIPNERF360_UNBOUNDED_SCENES,
    NERF_SYNTHETIC_SCENES,
21
    render_image_with_occgrid,
22
    render_image_with_occgrid_test,
23
24
    set_random_seed,
)
25
from nerfacc.estimators.occ_grid import OccGridEstimator
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
26

Ruilong Li's avatar
format  
Ruilong Li committed
27

Ruilong Li's avatar
Ruilong Li committed
28
29
30
def run(args):
    device = "cuda:0"
    set_random_seed(42)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
31

Ruilong Li's avatar
Ruilong Li committed
32
33
    if args.scene in MIPNERF360_UNBOUNDED_SCENES:
        from datasets.nerf_360_v2 import SubjectLoader
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
34

Ruilong Li's avatar
Ruilong Li committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        # training parameters
        max_steps = 20000
        init_batch_size = 1024
        target_sample_batch_size = 1 << 18
        weight_decay = 0.0
        # scene parameters
        aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=device)
        near_plane = 0.2
        far_plane = 1.0e10
        # dataset parameters
        train_dataset_kwargs = {"color_bkgd_aug": "random", "factor": 4}
        test_dataset_kwargs = {"factor": 4}
        # model parameters
        grid_resolution = 128
        grid_nlvl = 4
        # render parameters
        render_step_size = 1e-3
        alpha_thre = 1e-2
        cone_angle = 0.004
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
54

Ruilong Li's avatar
Ruilong Li committed
55
56
    else:
        from datasets.nerf_synthetic import SubjectLoader
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
57

Ruilong Li's avatar
Ruilong Li committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        # training parameters
        max_steps = 20000
        init_batch_size = 1024
        target_sample_batch_size = 1 << 18
        weight_decay = (
            1e-5 if args.scene in ["materials", "ficus", "drums"] else 1e-6
        )
        # scene parameters
        aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5], device=device)
        near_plane = 0.0
        far_plane = 1.0e10
        # dataset parameters
        train_dataset_kwargs = {}
        test_dataset_kwargs = {}
        # model parameters
        grid_resolution = 128
        grid_nlvl = 1
        # render parameters
        render_step_size = 5e-3
        alpha_thre = 0.0
        cone_angle = 0.0
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
79

Ruilong Li's avatar
Ruilong Li committed
80
81
82
83
84
85
86
    train_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=args.data_root,
        split=args.train_split,
        num_rays=init_batch_size,
        device=device,
        **train_dataset_kwargs,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
87
88
    )

Ruilong Li's avatar
Ruilong Li committed
89
90
91
92
93
94
95
96
    test_dataset = SubjectLoader(
        subject_id=args.scene,
        root_fp=args.data_root,
        split="test",
        num_rays=None,
        device=device,
        **test_dataset_kwargs,
    )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    if args.vdb:
        from fvdb import sparse_grid_from_dense

        from nerfacc.estimators.vdb import VDBEstimator

        assert grid_nlvl == 1, "VDBEstimator only supports grid_nlvl=1"
        voxel_sizes = (aabb[3:] - aabb[:3]) / grid_resolution
        origins = aabb[:3] + voxel_sizes / 2
        grid = sparse_grid_from_dense(
            1,
            (grid_resolution, grid_resolution, grid_resolution),
            voxel_sizes=voxel_sizes,
            origins=origins,
        )
        estimator = VDBEstimator(grid).to(device)
        estimator.aabbs = [aabb]
    else:
        estimator = OccGridEstimator(
            roi_aabb=aabb, resolution=grid_resolution, levels=grid_nlvl
        ).to(device)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
118

Ruilong Li's avatar
Ruilong Li committed
119
120
121
122
    # setup the radiance field we want to train.
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
    radiance_field = NGPRadianceField(aabb=estimator.aabbs[-1]).to(device)
    optimizer = torch.optim.Adam(
Ruilong Li's avatar
format  
Ruilong Li committed
123
124
125
126
        radiance_field.parameters(),
        lr=1e-2,
        eps=1e-15,
        weight_decay=weight_decay,
Ruilong Li's avatar
Ruilong Li committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    )
    scheduler = torch.optim.lr_scheduler.ChainedScheduler(
        [
            torch.optim.lr_scheduler.LinearLR(
                optimizer, start_factor=0.01, total_iters=100
            ),
            torch.optim.lr_scheduler.MultiStepLR(
                optimizer,
                milestones=[
                    max_steps // 2,
                    max_steps * 3 // 4,
                    max_steps * 9 // 10,
                ],
                gamma=0.33,
            ),
        ]
    )
    lpips_net = LPIPS(net="vgg").to(device)
    lpips_norm_fn = lambda x: x[None, ...].permute(0, 3, 1, 2) * 2 - 1
    lpips_fn = lambda x, y: lpips_net(lpips_norm_fn(x), lpips_norm_fn(y)).mean()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
147

Ruilong Li's avatar
Ruilong Li committed
148
149
150
151
152
    # training
    tic = time.time()
    for step in range(max_steps + 1):
        radiance_field.train()
        estimator.train()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
153

Ruilong Li's avatar
Ruilong Li committed
154
155
        i = torch.randint(0, len(train_dataset), (1,)).item()
        data = train_dataset[i]
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
156

Ruilong Li's avatar
Ruilong Li committed
157
158
159
        render_bkgd = data["color_bkgd"]
        rays = data["rays"]
        pixels = data["pixels"]
160

Ruilong Li's avatar
Ruilong Li committed
161
162
163
        def occ_eval_fn(x):
            density = radiance_field.query_density(x)
            return density * render_step_size
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
164

Ruilong Li's avatar
Ruilong Li committed
165
166
167
168
169
170
        # update occupancy grid
        estimator.update_every_n_steps(
            step=step,
            occ_eval_fn=occ_eval_fn,
            occ_thre=1e-2,
        )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
171

Ruilong Li's avatar
Ruilong Li committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        # render
        rgb, acc, depth, n_rendering_samples = render_image_with_occgrid(
            radiance_field,
            estimator,
            rays,
            # rendering options
            near_plane=near_plane,
            render_step_size=render_step_size,
            render_bkgd=render_bkgd,
            cone_angle=cone_angle,
            alpha_thre=alpha_thre,
        )
        if n_rendering_samples == 0:
            continue
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
186

Ruilong Li's avatar
Ruilong Li committed
187
188
189
190
        if target_sample_batch_size > 0:
            # dynamic batch size for rays to keep sample batch size constant.
            num_rays = len(pixels)
            num_rays = int(
Ruilong Li's avatar
format  
Ruilong Li committed
191
192
                num_rays
                * (target_sample_batch_size / float(n_rendering_samples))
Ruilong Li's avatar
Ruilong Li committed
193
194
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
195

Ruilong Li's avatar
Ruilong Li committed
196
197
        # compute loss
        loss = F.smooth_l1_loss(rgb, pixels)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
198

Ruilong Li's avatar
Ruilong Li committed
199
200
201
202
203
        optimizer.zero_grad()
        # do not unscale it because we are using Adam.
        grad_scaler.scale(loss).backward()
        optimizer.step()
        scheduler.step()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
204

Ruilong Li's avatar
Ruilong Li committed
205
206
207
208
209
210
211
212
213
214
        if step % 10000 == 0:
            elapsed_time = time.time() - tic
            loss = F.mse_loss(rgb, pixels)
            psnr = -10.0 * torch.log(loss) / np.log(10.0)
            print(
                f"elapsed_time={elapsed_time:.2f}s | step={step} | "
                f"loss={loss:.5f} | psnr={psnr:.2f} | "
                f"n_rendering_samples={n_rendering_samples:d} | num_rays={len(pixels):d} | "
                f"max_depth={depth.max():.3f} | "
            )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
215

Ruilong Li's avatar
Ruilong Li committed
216
217
218
219
220
221
222
223
224
225
226
227
228
        if step > 0 and step % max_steps == 0:
            # evaluation
            radiance_field.eval()
            estimator.eval()

            psnrs = []
            lpips = []
            with torch.no_grad():
                for i in tqdm.tqdm(range(len(test_dataset))):
                    data = test_dataset[i]
                    render_bkgd = data["color_bkgd"]
                    rays = data["rays"]
                    pixels = data["pixels"]
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
229

Ruilong Li's avatar
Ruilong Li committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                    # rendering
                    # rgb, acc, depth, _ = render_image_with_occgrid_test(
                    #     1024,
                    #     # scene
                    #     radiance_field,
                    #     estimator,
                    #     rays,
                    #     # rendering options
                    #     near_plane=near_plane,
                    #     render_step_size=render_step_size,
                    #     render_bkgd=render_bkgd,
                    #     cone_angle=cone_angle,
                    #     alpha_thre=alpha_thre,
                    # )
                    rgb, acc, depth, _ = render_image_with_occgrid(
                        radiance_field,
                        estimator,
                        rays,
                        # rendering options
                        near_plane=near_plane,
                        render_step_size=render_step_size,
                        render_bkgd=render_bkgd,
                        cone_angle=cone_angle,
                        alpha_thre=alpha_thre,
                    )
                    mse = F.mse_loss(rgb, pixels)
                    psnr = -10.0 * torch.log(mse) / np.log(10.0)
                    psnrs.append(psnr.item())
                    lpips.append(lpips_fn(rgb, pixels).item())
                    # if i == 0:
                    #     imageio.imwrite(
                    #         "rgb_test.png",
                    #         (rgb.cpu().numpy() * 255).astype(np.uint8),
                    #     )
                    #     imageio.imwrite(
                    #         "rgb_error.png",
                    #         (
                    #             (rgb - pixels).norm(dim=-1).cpu().numpy() * 255
                    #         ).astype(np.uint8),
                    #     )
            psnr_avg = sum(psnrs) / len(psnrs)
            lpips_avg = sum(lpips) / len(lpips)
            print(f"evaluation: psnr_avg={psnr_avg}, lpips_avg={lpips_avg}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
273

Ruilong Li's avatar
format  
Ruilong Li committed
274

Ruilong Li's avatar
Ruilong Li committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_root",
        type=str,
        # default=str(pathlib.Path.cwd() / "data/360_v2"),
        default=str(pathlib.Path.cwd() / "data/nerf_synthetic"),
        help="the root dir of the dataset",
    )
    parser.add_argument(
        "--train_split",
        type=str,
        default="train",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    parser.add_argument(
        "--scene",
        type=str,
        default="lego",
        choices=NERF_SYNTHETIC_SCENES + MIPNERF360_UNBOUNDED_SCENES,
        help="which scene to use",
    )
298
299
300
301
302
    parser.add_argument(
        "--vdb",
        action="store_true",
        help="use VDBEstimator instead of OccGridEstimator",
    )
Ruilong Li's avatar
Ruilong Li committed
303
    args = parser.parse_args()
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
304

Ruilong Li's avatar
format  
Ruilong Li committed
305
    run(args)