ngp.py 5.28 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from typing import Callable, List, Union

import torch
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

try:
    import tinycudann as tcnn
except ImportError:
    print(
        "Please install tinycudann by: "
        "pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch"
    )
    exit()

from .base import BaseRadianceField


class NGPradianceField(BaseRadianceField):
    """Instance-NGP radiance Field"""

    class _TruncExp(Function):  # pylint: disable=abstract-method
        # Implementation from torch-ngp:
        # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
        @staticmethod
        @custom_fwd(cast_inputs=torch.float32)
        def forward(ctx, x):  # pylint: disable=arguments-differ
            ctx.save_for_backward(x)
            return torch.exp(x)

        @staticmethod
        @custom_bwd
        def backward(ctx, g):  # pylint: disable=arguments-differ
            x = ctx.saved_tensors[0]
            return g * torch.exp(x.clamp(-15, 15))

    trunc_exp = _TruncExp.apply

    def __init__(
        self,
        aabb: Union[torch.Tensor, List[float]],
        num_dim: int = 3,
        use_viewdirs: bool = True,
        density_activation: Callable = trunc_exp,
    ) -> None:
        super().__init__()
        if not isinstance(aabb, torch.Tensor):
            aabb = torch.tensor(aabb, dtype=torch.float32)
        self.register_buffer("aabb", aabb)
        self.num_dim = num_dim
        self.use_viewdirs = use_viewdirs
        self.density_activation = density_activation

        self.geo_feat_dim = 15
        per_level_scale = 1.4472692012786865

        if self.use_viewdirs:
            self.direction_encoding = tcnn.Encoding(
                n_input_dims=num_dim,
                encoding_config={
                    "otype": "SphericalHarmonics",
                    "degree": 4,
                },
            )

        self.mlp_base = tcnn.NetworkWithInputEncoding(
            n_input_dims=num_dim,
            n_output_dims=1 + self.geo_feat_dim,
            encoding_config={
                "otype": "HashGrid",
                "n_levels": 16,
                "n_features_per_level": 2,
                "log2_hashmap_size": 19,
                "base_resolution": 16,
                "per_level_scale": per_level_scale,
            },
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "None",
                "n_neurons": 64,
                "n_hidden_layers": 1,
            },
        )

        self.mlp_head = tcnn.Network(
            n_input_dims=(
                (self.direction_encoding.n_output_dims if self.use_viewdirs else 0)
                + self.geo_feat_dim
            ),
            n_output_dims=3,
            network_config={
                "otype": "FullyFusedMLP",
                "activation": "ReLU",
                "output_activation": "Sigmoid",
                "n_neurons": 64,
                "n_hidden_layers": 2,
            },
        )

    @torch.cuda.amp.autocast()
    def query_density(self, x, return_feat: bool = False):
        bb_min, bb_max = torch.split(self.aabb, [self.num_dim, self.num_dim], dim=0)
        x = (x - bb_min) / (bb_max - bb_min)
        selector = ((x > 0.0) & (x < 1.0)).all(dim=-1)
        x = (
            self.mlp_base(x.view(-1, self.num_dim))
            .view(list(x.shape[:-1]) + [1 + self.geo_feat_dim])
            .to(x)
        )
        density_before_activation, base_mlp_out = torch.split(
            x, [1, self.geo_feat_dim], dim=-1
        )
        density = (
            self.density_activation(density_before_activation) * selector[..., None]
        )
        if return_feat:
            return density, base_mlp_out
        else:
            return density

    @torch.cuda.amp.autocast()
    def _query_rgb(self, dir, embedding):
        # tcnn requires directions in the range [0, 1]
        if self.use_viewdirs:
            dir = (dir + 1.0) / 2.0
            d = self.direction_encoding(dir.view(-1, dir.shape[-1]))
            h = torch.cat([d, embedding.view(-1, self.geo_feat_dim)], dim=-1)
        else:
            h = embedding.view(-1, self.geo_feat_dim)
        rgb = self.mlp_head(h).view(list(embedding.shape[:-1]) + [3]).to(embedding)
        return rgb

    @torch.cuda.amp.autocast()
    def forward(
        self,
        positions: torch.Tensor,
        directions: torch.Tensor = None,
        mask: torch.Tensor = None,
    ):
        if self.use_viewdirs and (directions is not None):
            assert (
                positions.shape == directions.shape
            ), f"{positions.shape} v.s. {directions.shape}"
        if mask is not None:
            density = torch.zeros_like(positions[..., :1])
            rgb = torch.zeros(list(positions.shape[:-1]) + [3], device=positions.device)
            density[mask], embedding = self.query_density(positions[mask])
            rgb[mask] = self.query_rgb(
                directions[mask] if directions is not None else None,
                embedding=embedding,
            )
        else:
            density, embedding = self.query_density(positions, return_feat=True)
            rgb = self._query_rgb(directions, embedding=embedding)

        return rgb, density