mlp.py 9.63 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
""" The MLPs and Voxels. """
2
import functools
Ruilong Li's avatar
Ruilong Li committed
3
import math
4
from typing import Callable, Optional
Ruilong Li's avatar
Ruilong Li committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

import torch
import torch.nn as nn
import torch.nn.functional as F


class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,  # The number of input tensor channels.
        output_dim: int = None,  # The number of output tensor channels.
        net_depth: int = 8,  # The depth of the MLP.
        net_width: int = 256,  # The width of the MLP.
        skip_layer: int = 4,  # The layer to add skip layers to.
        hidden_init: Callable = nn.init.xavier_uniform_,
        hidden_activation: Callable = nn.ReLU(),
        output_enabled: bool = True,
        output_init: Optional[Callable] = nn.init.xavier_uniform_,
        output_activation: Optional[Callable] = nn.Identity(),
        bias_enabled: bool = True,
        bias_init: Callable = nn.init.zeros_,
    ):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.net_depth = net_depth
        self.net_width = net_width
        self.skip_layer = skip_layer
        self.hidden_init = hidden_init
        self.hidden_activation = hidden_activation
        self.output_enabled = output_enabled
        self.output_init = output_init
        self.output_activation = output_activation
        self.bias_enabled = bias_enabled
        self.bias_init = bias_init

        self.hidden_layers = nn.ModuleList()
        in_features = self.input_dim
        for i in range(self.net_depth):
            self.hidden_layers.append(
                nn.Linear(in_features, self.net_width, bias=bias_enabled)
            )
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
47
48
49
50
51
            if (
                (self.skip_layer is not None)
                and (i % self.skip_layer == 0)
                and (i > 0)
            ):
Ruilong Li's avatar
Ruilong Li committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
                in_features = self.net_width + self.input_dim
            else:
                in_features = self.net_width
        if self.output_enabled:
            self.output_layer = nn.Linear(
                in_features, self.output_dim, bias=bias_enabled
            )
        else:
            self.output_dim = in_features

        self.initialize()

    def initialize(self):
        def init_func_hidden(m):
            if isinstance(m, nn.Linear):
                if self.hidden_init is not None:
                    self.hidden_init(m.weight)
                if self.bias_enabled and self.bias_init is not None:
                    self.bias_init(m.bias)

        self.hidden_layers.apply(init_func_hidden)
        if self.output_enabled:

            def init_func_output(m):
                if isinstance(m, nn.Linear):
                    if self.output_init is not None:
                        self.output_init(m.weight)
                    if self.bias_enabled and self.bias_init is not None:
                        self.bias_init(m.bias)

            self.output_layer.apply(init_func_output)

    def forward(self, x):
        inputs = x
        for i in range(self.net_depth):
            x = self.hidden_layers[i](x)
            x = self.hidden_activation(x)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
89
90
91
92
93
            if (
                (self.skip_layer is not None)
                and (i % self.skip_layer == 0)
                and (i > 0)
            ):
Ruilong Li's avatar
Ruilong Li committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
                x = torch.cat([x, inputs], dim=-1)
        if self.output_enabled:
            x = self.output_layer(x)
            x = self.output_activation(x)
        return x


class DenseLayer(MLP):
    def __init__(self, input_dim, output_dim, **kwargs):
        super().__init__(
            input_dim=input_dim,
            output_dim=output_dim,
            net_depth=0,  # no hidden layers
            **kwargs,
        )


class NerfMLP(nn.Module):
    def __init__(
        self,
        input_dim: int,  # The number of input tensor channels.
        condition_dim: int,  # The number of condition tensor channels.
        net_depth: int = 8,  # The depth of the MLP.
        net_width: int = 256,  # The width of the MLP.
        skip_layer: int = 4,  # The layer to add skip layers to.
        net_depth_condition: int = 1,  # The depth of the second part of MLP.
        net_width_condition: int = 128,  # The width of the second part of MLP.
    ):
        super().__init__()
        self.base = MLP(
            input_dim=input_dim,
            net_depth=net_depth,
            net_width=net_width,
            skip_layer=skip_layer,
            output_enabled=False,
        )
        hidden_features = self.base.output_dim
        self.sigma_layer = DenseLayer(hidden_features, 1)

        if condition_dim > 0:
            self.bottleneck_layer = DenseLayer(hidden_features, net_width)
            self.rgb_layer = MLP(
                input_dim=net_width + condition_dim,
                output_dim=3,
                net_depth=net_depth_condition,
                net_width=net_width_condition,
                skip_layer=None,
            )
        else:
            self.rgb_layer = DenseLayer(hidden_features, 3)

    def query_density(self, x):
        x = self.base(x)
        raw_sigma = self.sigma_layer(x)
        return raw_sigma

    def forward(self, x, condition=None):
        x = self.base(x)
        raw_sigma = self.sigma_layer(x)
        if condition is not None:
            if condition.shape[:-1] != x.shape[:-1]:
                num_rays, n_dim = condition.shape
                condition = condition.view(
                    [num_rays] + [1] * (x.dim() - condition.dim()) + [n_dim]
                ).expand(list(x.shape[:-1]) + [n_dim])
            bottleneck = self.bottleneck_layer(x)
            x = torch.cat([bottleneck, condition], dim=-1)
        raw_rgb = self.rgb_layer(x)
        return raw_rgb, raw_sigma


class SinusoidalEncoder(nn.Module):
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
166
    """Sinusoidal Positional Encoder used in Nerf."""
Ruilong Li's avatar
Ruilong Li committed
167
168
169
170
171
172
173
174
175
176
177
178
179

    def __init__(self, x_dim, min_deg, max_deg, use_identity: bool = True):
        super().__init__()
        self.x_dim = x_dim
        self.min_deg = min_deg
        self.max_deg = max_deg
        self.use_identity = use_identity
        self.register_buffer(
            "scales", torch.tensor([2**i for i in range(min_deg, max_deg)])
        )

    @property
    def latent_dim(self) -> int:
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
180
181
182
        return (
            int(self.use_identity) + (self.max_deg - self.min_deg) * 2
        ) * self.x_dim
Ruilong Li's avatar
Ruilong Li committed
183

184
    def forward(self, x: torch.Tensor) -> torch.Tensor:
Ruilong Li's avatar
Ruilong Li committed
185
186
187
188
189
190
        """
        Args:
            x: [..., x_dim]
        Returns:
            latent: [..., latent_dim]
        """
191
192
        if self.max_deg == self.min_deg:
            return x
Ruilong Li's avatar
Ruilong Li committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        xb = torch.reshape(
            (x[Ellipsis, None, :] * self.scales[:, None]),
            list(x.shape[:-1]) + [(self.max_deg - self.min_deg) * self.x_dim],
        )
        latent = torch.sin(torch.cat([xb, xb + 0.5 * math.pi], dim=-1))
        if self.use_identity:
            latent = torch.cat([x] + [latent], dim=-1)
        return latent


class VanillaNeRFRadianceField(nn.Module):
    def __init__(
        self,
        net_depth: int = 8,  # The depth of the MLP.
        net_width: int = 256,  # The width of the MLP.
        skip_layer: int = 4,  # The layer to add skip layers to.
        net_depth_condition: int = 1,  # The depth of the second part of MLP.
        net_width_condition: int = 128,  # The width of the second part of MLP.
    ) -> None:
        super().__init__()
        self.posi_encoder = SinusoidalEncoder(3, 0, 10, True)
        self.view_encoder = SinusoidalEncoder(3, 0, 4, True)
        self.mlp = NerfMLP(
            input_dim=self.posi_encoder.latent_dim,
            condition_dim=self.view_encoder.latent_dim,
            net_depth=net_depth,
            net_width=net_width,
            skip_layer=skip_layer,
            net_depth_condition=net_depth_condition,
            net_width_condition=net_width_condition,
        )

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
225
226
227
228
229
230
231
    def query_opacity(self, x, step_size):
        density = self.query_density(x)
        # if the density is small enough those two are the same.
        # opacity = 1.0 - torch.exp(-density * step_size)
        opacity = density * step_size
        return opacity

Ruilong Li's avatar
Ruilong Li committed
232
233
234
235
236
237
238
239
240
241
242
    def query_density(self, x):
        x = self.posi_encoder(x)
        sigma = self.mlp.query_density(x)
        return F.relu(sigma)

    def forward(self, x, condition=None):
        x = self.posi_encoder(x)
        if condition is not None:
            condition = self.view_encoder(condition)
        rgb, sigma = self.mlp(x, condition=condition)
        return torch.sigmoid(rgb), F.relu(sigma)
243
244
245
246
247
248
249
250


class DNeRFRadianceField(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.posi_encoder = SinusoidalEncoder(3, 0, 0, True)
        self.time_encoder = SinusoidalEncoder(1, 0, 0, True)
        self.warp = MLP(
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
251
252
            input_dim=self.posi_encoder.latent_dim
            + self.time_encoder.latent_dim,
253
254
255
256
257
258
259
260
            output_dim=3,
            net_depth=4,
            net_width=64,
            skip_layer=2,
            output_init=functools.partial(torch.nn.init.uniform_, b=1e-4),
        )
        self.nerf = VanillaNeRFRadianceField()

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
261
262
263
264
265
266
267
268
269
    def query_opacity(self, x, timestamps, step_size):
        idxs = torch.randint(0, len(timestamps), (x.shape[0],), device=x.device)
        t = timestamps[idxs]
        density = self.query_density(x, t)
        # if the density is small enough those two are the same.
        # opacity = 1.0 - torch.exp(-density * step_size)
        opacity = density * step_size
        return opacity

270
271
272
273
274
275
276
277
278
279
280
    def query_density(self, x, t):
        x = x + self.warp(
            torch.cat([self.posi_encoder(x), self.time_encoder(t)], dim=-1)
        )
        return self.nerf.query_density(x)

    def forward(self, x, t, condition=None):
        x = x + self.warp(
            torch.cat([self.posi_encoder(x), self.time_encoder(t)], dim=-1)
        )
        return self.nerf(x, condition=condition)