test_grid.py 4.8 KB
Newer Older
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
1
2
3
4
5
6
7
import pytest
import torch

device = "cuda:0"


@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
8
9
def test_ray_aabb_intersect():
    from nerfacc.grid import _ray_aabb_intersect, ray_aabb_intersect
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
10

11
12
13
    torch.manual_seed(42)
    n_rays = 1000
    n_aabbs = 100
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    rays_o = torch.rand((n_rays, 3), device=device)
    rays_d = torch.randn((n_rays, 3), device=device)
    rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True)
    aabb_min = torch.rand((n_aabbs, 3), device=device)
    aabb_max = aabb_min + torch.rand_like(aabb_min)
    aabbs = torch.cat([aabb_min, aabb_max], dim=-1)

    # [n_rays, n_aabbs]
    tmins, tmaxs, hits = ray_aabb_intersect(rays_o, rays_d, aabbs)
    _tmins, _tmaxs, _hits = _ray_aabb_intersect(rays_o, rays_d, aabbs)
    assert torch.allclose(tmins, _tmins), (tmins - _tmins).abs().max()
    assert torch.allclose(tmaxs, _tmaxs), (tmaxs - _tmaxs).abs().max()
    assert (hits == _hits).all(), (hits == _hits).float().mean()

    # whether mid points are inside aabbs
    tmids = torch.clamp((tmins + tmaxs) / 2, min=0.0)
    points = tmids[:, :, None] * rays_d[:, None, :] + rays_o[:, None, :]
    _hits = (
        (points >= aabb_min[None, ...]) & (points <= aabb_max[None, ...])
    ).all(dim=-1)
    assert torch.allclose(hits, _hits)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
36
37


38
@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def test_traverse_grids():
    from nerfacc.grid import _enlarge_aabb, _query, traverse_grids

    torch.manual_seed(42)
    n_rays = 10
    n_aabbs = 4

    rays_o = torch.randn((n_rays, 3), device=device)
    rays_d = torch.randn((n_rays, 3), device=device)
    rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True)

    base_aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=device)
    aabbs = torch.stack(
        [_enlarge_aabb(base_aabb, 2**i) for i in range(n_aabbs)]
    )

    binaries = torch.rand((n_aabbs, 32, 32, 32), device=device) > 0.5

    intervals, samples = traverse_grids(rays_o, rays_d, binaries, aabbs)

    ray_indices = samples.ray_indices
    t_starts = intervals.vals[intervals.is_left]
    t_ends = intervals.vals[intervals.is_right]
    positions = (
        rays_o[ray_indices]
        + rays_d[ray_indices] * (t_starts + t_ends)[:, None] / 2.0
    )
    occs, selector = _query(positions, binaries, base_aabb)
    assert occs.all(), occs.float().mean()
    assert selector.all(), selector.float().mean()
69
70


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_traverse_grids_with_near_far_planes():
    from nerfacc.grid import traverse_grids

    rays_o = torch.tensor([[-1.0, 0.0, 0.0]], device=device)
    rays_d = torch.tensor([[1.0, 0.01, 0.01]], device=device)
    rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True)

    binaries = torch.ones((1, 1, 1, 1), dtype=torch.bool, device=device)
    aabbs = torch.tensor([[0.0, 0.0, 0.0, 1.0, 1.0, 1.0]], device=device)

    near_planes = torch.tensor([1.2], device=device)
    far_planes = torch.tensor([1.5], device=device)
    step_size = 0.05

    intervals, samples = traverse_grids(
        rays_o=rays_o,
        rays_d=rays_d,
        binaries=binaries,
        aabbs=aabbs,
        step_size=step_size,
        near_planes=near_planes,
        far_planes=far_planes,
    )
    assert (intervals.vals >= (near_planes - step_size / 2)).all()
    assert (intervals.vals <= (far_planes + step_size / 2)).all()


99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
@pytest.mark.skipif(not torch.cuda.is_available, reason="No CUDA device")
def test_sampling_with_min_max_distances():
    from nerfacc import OccGridEstimator

    torch.manual_seed(42)
    n_rays = 64
    levels = 4
    resolution = 32
    render_step_size = 0.01
    near_plane = 0.15
    far_plane = 0.85

    rays_o = torch.rand((n_rays, 3), device=device) * 2 - 1.0
    rays_d = torch.rand((n_rays, 3), device=device)
    rays_d = rays_d / rays_d.norm(dim=-1, keepdim=True)

    aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=device)
    binaries = (
        torch.rand((levels, resolution, resolution, resolution), device=device)
        > 0.5
    )
    t_min = torch.rand((n_rays,), device=device)
    t_max = t_min + torch.rand((n_rays,), device=device)

    grid_estimator = OccGridEstimator(
        roi_aabb=aabb, resolution=resolution, levels=levels
    )

    grid_estimator.binaries = binaries

    ray_indices, t_starts, t_ends = grid_estimator.sampling(
        rays_o=rays_o,
        rays_d=rays_d,
        near_plane=near_plane,
        far_plane=far_plane,
        t_min=t_min,
        t_max=t_max,
        render_step_size=render_step_size,
    )

    assert (t_starts >= (t_min[ray_indices] - render_step_size / 2)).all()
    assert (t_ends <= (t_max[ray_indices] + render_step_size / 2)).all()


Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
143
if __name__ == "__main__":
144
145
    test_ray_aabb_intersect()
    test_traverse_grids()
146
    test_traverse_grids_with_near_far_planes()
147
    test_sampling_with_min_max_distances()