README.md 5.45 KB
Newer Older
renzhc's avatar
renzhc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# OFA

> [OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework](https://arxiv.org/abs/2202.03052)

<!-- [ALGORITHM] -->

## Abstract

In this work, we pursue a unified paradigm for multimodal pretraining to break the scaffolds of complex task/modality-specific customization. We propose OFA, a Task-Agnostic and Modality-Agnostic framework that supports Task Comprehensiveness. OFA unifies a diverse set of cross-modal and unimodal tasks, including image generation, visual grounding, image captioning, image classification, language modeling, etc., in a simple sequence-to-sequence learning framework. OFA follows the instruction-based learning in both pretraining and finetuning stages, requiring no extra task-specific layers for downstream tasks. In comparison with the recent state-of-the-art vision & language models that rely on extremely large cross-modal datasets, OFA is pretrained on only 20M publicly available image-text pairs. Despite its simplicity and relatively small-scale training data, OFA achieves new SOTAs in a series of cross-modal tasks while attaining highly competitive performances on uni-modal tasks. Our further analysis indicates that OFA can also effectively transfer to unseen tasks and unseen domains.

<div align=center>
<img src="https://user-images.githubusercontent.com/26739999/236164275-2429bf20-6e2a-4325-acc2-6117f9b53a53.png" width="80%"/>
</div>

## How to use it?

<!-- [TABS-BEGIN] -->

**Use the model**

```python
from mmpretrain import inference_model

result = inference_model('ofa-base_3rdparty-finetuned_caption', 'demo/cat-dog.png')
print(result)
# {'pred_caption': 'a dog and a kitten sitting next to each other'}
```

**Test Command**

Prepare your dataset according to the [docs](https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html#prepare-dataset).

Test:

```shell
python tools/test.py configs/ofa/ofa-base_finetuned_refcoco.py https://download.openmmlab.com/mmclassification/v1/ofa/ofa-base_3rdparty_refcoco_20230418-2797d3ab.pth
```

<!-- [TABS-END] -->

## Models and results

### Image Caption on COCO

| Model                                   | Params (M) | BLEU-4 | CIDER  |                 Config                  |                                               Download                                               |
| :-------------------------------------- | :--------: | :----: | :----: | :-------------------------------------: | :--------------------------------------------------------------------------------------------------: |
| `ofa-base_3rdparty-finetuned_caption`\* |   182.24   | 42.64  | 144.50 | [config](ofa-base_finetuned_caption.py) | [model](https://download.openmmlab.com/mmclassification/v1/ofa/ofa-base_3rdparty_coco-caption_20230418-de18914e.pth) |

*Models with * are converted from the [official repo](https://github.com/OFA-Sys/OFA). The config files of these models are only for inference. We haven't reproduce the training results.*

### Visual Grounding on RefCOCO

| Model                                   | Params (M) | Accuracy (testA) | Accuracy (testB) |                 Config                  |                                     Download                                     |
| :-------------------------------------- | :--------: | :--------------: | :--------------: | :-------------------------------------: | :------------------------------------------------------------------------------: |
| `ofa-base_3rdparty-finetuned_refcoco`\* |   182.24   |      90.49       |      83.63       | [config](ofa-base_finetuned_refcoco.py) | [model](https://download.openmmlab.com/mmclassification/v1/ofa/ofa-base_3rdparty_refcoco_20230418-2797d3ab.pth) |

*Models with * are converted from the [official repo](https://github.com/OFA-Sys/OFA). The config files of these models are only for inference. We haven't reproduce the training results.*

### Visual Question Answering on VQAv2

| Model                               | Params (M) | Accuracy |               Config                |                                                     Download                                                     |
| :---------------------------------- | :--------: | :------: | :---------------------------------: | :--------------------------------------------------------------------------------------------------------------: |
| `ofa-base_3rdparty-finetuned_vqa`\* |   182.24   |  78.00   | [config](ofa-base_finetuned_vqa.py) | [model](https://download.openmmlab.com/mmclassification/v1/ofa/ofa-base_3rdparty_coco-vqa_20230418-f38539a5.pth) |
| `ofa-base_3rdparty-zeroshot_vqa`\*  |   182.24   |  58.32   | [config](ofa-base_zeroshot_vqa.py)  | [model](https://download.openmmlab.com/mmclassification/v1/ofa/ofa-base_3rdparty_pretrain_20230418-dccfc07f.pth) |

*Models with * are converted from the [official repo](https://github.com/OFA-Sys/OFA). The config files of these models are only for inference. We haven't reproduce the training results.*

## Citation

```bibtex
@article{wang2022ofa,
  author    = {Peng Wang and
               An Yang and
               Rui Men and
               Junyang Lin and
               Shuai Bai and
               Zhikang Li and
               Jianxin Ma and
               Chang Zhou and
               Jingren Zhou and
               Hongxia Yang},
  title     = {OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence
               Learning Framework},
  journal   = {CoRR},
  volume    = {abs/2202.03052},
  year      = {2022}
}
```