metafile.yml 8.19 KB
Newer Older
renzhc's avatar
renzhc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
Collections:
  - Name: MoCoV3
    Metadata:
      Training Data: ImageNet-1k
      Training Techniques:
        - LARS
      Training Resources: 32x V100 GPUs
      Architecture:
        - ResNet
        - ViT
        - MoCo
    Paper:
      Title: An Empirical Study of Training Self-Supervised Vision Transformers
      URL: https://arxiv.org/abs/2104.02057
    README: configs/mocov3/README.md

Models:
  - Name: mocov3_resnet50_8xb512-amp-coslr-100e_in1k
    Metadata:
      Epochs: 100
      Batch Size: 4096
      FLOPs: 4109364224
      Parameters: 68012160
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth
    Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
    Downstream:
      - resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
  - Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k
    Metadata:
      Epochs: 300
      Batch Size: 4096
      FLOPs: 4109364224
      Parameters: 68012160
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth
    Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py
    Downstream:
      - resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
  - Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k
    Metadata:
      Epochs: 800
      Batch Size: 4096
      FLOPs: 4109364224
      Parameters: 68012160
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth
    Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py
    Downstream:
      - resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
  - Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
    Metadata:
      Epochs: 90
      Batch Size: 1024
      FLOPs: 4109464576
      Parameters: 25557032
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 69.6
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth
    Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
  - Name: resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
    Metadata:
      Epochs: 90
      Batch Size: 1024
      FLOPs: 4109464576
      Parameters: 25557032
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 72.8
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth
    Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
  - Name: resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
    Metadata:
      Epochs: 90
      Batch Size: 1024
      FLOPs: 4109464576
      Parameters: 25557032
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 74.4
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth
    Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
  - Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k
    Metadata:
      Epochs: 300
      Batch Size: 4096
      FLOPs: 4607954304
      Parameters: 84266752
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth
    Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py
    Downstream:
      - vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
  - Name: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
    Metadata:
      Epochs: 90
      Batch Size: 1024
      FLOPs: 4607954304
      Parameters: 22050664
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 73.6
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth
    Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py
  - Name: mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k
    Metadata:
      Epochs: 300
      Batch Size: 4096
      FLOPs: 17581972224
      Parameters: 215678464
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth
    Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py
    Downstream:
      - vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
      - vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
  - Name: vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
    Metadata:
      Epochs: 150
      Batch Size: 512
      FLOPs: 17581972224
      Parameters: 86567656
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 83.0
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth
    Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py
  - Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
    Metadata:
      Epochs: 90
      Batch Size: 1024
      FLOPs: 17581972224
      Parameters: 86567656
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 76.9
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth
    Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
  - Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k
    Metadata:
      Epochs: 300
      Batch Size: 4096
      FLOPs: 61603111936
      Parameters: 652781568
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth
    Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
    Downstream:
      - vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
  - Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
    Metadata:
      Epochs: 100
      Batch Size: 512
      FLOPs: 61603111936
      Parameters: 304326632
      Training Data: ImageNet-1k
    In Collection: MoCoV3
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 83.7
    Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth
    Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py