efficientnetv2-b0_8xb32_in1k.py 1.6 KB
Newer Older
renzhc's avatar
renzhc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
_base_ = [
    '../_base_/models/efficientnet_v2/efficientnetv2_b0.py',
    '../_base_/datasets/imagenet_bs32.py',
    '../_base_/schedules/imagenet_bs256.py',
    '../_base_/default_runtime.py',
]

# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
    num_classes=1000,
    # RGB format normalization parameters
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    # convert image from BGR to RGB
    to_rgb=True,
)

bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='RandomResizedCrop',
        scale=192,
        backend='pillow',
        interpolation='bicubic'),
    dict(type='RandomFlip', prob=0.5, direction='horizontal'),
    dict(
        type='RandAugment',
        policies='timm_increasing',
        num_policies=2,
        total_level=10,
        magnitude_level=9,
        magnitude_std=0.5,
        hparams=dict(
            pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
    dict(
        type='RandomErasing',
        erase_prob=0.25,
        mode='rand',
        min_area_ratio=0.02,
        max_area_ratio=1 / 3,
        fill_color=bgr_mean,
        fill_std=bgr_std),
    dict(type='PackInputs'),
]

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0),
    dict(type='PackInputs'),
]

train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))