metafile.yml 2.47 KB
Newer Older
renzhc's avatar
renzhc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
Collections:
  - Name: BEiT
    Metadata:
      Architecture:
        - Attention Dropout
        - Convolution
        - Dense Connections
        - Dropout
        - GELU
        - Layer Normalization
        - Multi-Head Attention
        - Scaled Dot-Product Attention
        - Tanh Activation
    Paper:
      Title: 'BEiT: BERT Pre-Training of Image Transformers'
      URL: https://arxiv.org/abs/2106.08254
    README: configs/beit/README.md
    Code:
      URL: https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/models/backbones/beit.py
      Version: v1.0.0rc4

Models:
  - Name: beit_beit-base-p16_8xb256-amp-coslr-300e_in1k
    Metadata:
      Epochs: 300
      Batch Size: 2048
      FLOPs: 17581219584
      Parameters: 86530984
      Training Data: ImageNet-1k
    In Collection: BEiT
    Results: null
    Weights: https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221128-ab79e626.pth
    Config: configs/beit/beit_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
    Downstream:
      - beit-base-p16_beit-pre_8xb128-coslr-100e_in1k
  - Name: beit-base-p16_beit-pre_8xb128-coslr-100e_in1k
    Metadata:
      Epochs: 100
      Batch Size: 1024
      FLOPs: 17581219584
      Parameters: 86530984
      Training Data: ImageNet-1k
    In Collection: BEiT
    Results:
      - Task: Image Classification
        Dataset: ImageNet-1k
        Metrics:
          Top 1 Accuracy: 83.1
    Weights: https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221128-0ca393e9.pth
    Config: configs/beit/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
  - Name: beit-base-p16_beit-in21k-pre_3rdparty_in1k
    Metadata:
      FLOPs: 17581219584
      Parameters: 86530984
      Training Data:
        - ImageNet-21k
        - ImageNet-1k
    In Collection: BEiT
    Results:
      - Dataset: ImageNet-1k
        Task: Image Classification
        Metrics:
          Top 1 Accuracy: 85.28
          Top 5 Accuracy: 97.59
    Weights: https://download.openmmlab.com/mmclassification/v0/beit/beit-base_3rdparty_in1k_20221114-c0a4df23.pth
    Config: configs/beit/benchmarks/beit-base-p16_8xb64_in1k.py
    Converted From:
      Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth
      Code: https://github.com/microsoft/unilm/tree/master/beit