imagenet_bs32_simclr.py 1.32 KB
Newer Older
renzhc's avatar
renzhc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
    type='SelfSupDataPreprocessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    to_rgb=True)

view_pipeline = [
    dict(type='RandomResizedCrop', scale=224, backend='pillow'),
    dict(type='RandomFlip', prob=0.5),
    dict(
        type='RandomApply',
        transforms=[
            dict(
                type='ColorJitter',
                brightness=0.8,
                contrast=0.8,
                saturation=0.8,
                hue=0.2)
        ],
        prob=0.8),
    dict(
        type='RandomGrayscale',
        prob=0.2,
        keep_channels=True,
        channel_weights=(0.114, 0.587, 0.2989)),
    dict(
        type='GaussianBlur',
        magnitude_range=(0.1, 2.0),
        magnitude_std='inf',
        prob=0.5),
]

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
    dict(type='PackInputs')
]

train_dataloader = dict(
    batch_size=32,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        split='train',
        pipeline=train_pipeline))