"tasks/git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "06fc51cef50fded88e0142f32b40dc615e39672a"
Commit f9ebc59b authored by VVsssssk's avatar VVsssssk Committed by ChaimZhu
Browse files

[Refactor]add lyft metric

parent d78f097c
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
from .indoor_metric import IndoorMetric # noqa: F401,F403 from .indoor_metric import IndoorMetric # noqa: F401,F403
from .kitti_metric import KittiMetric # noqa: F401,F403 from .kitti_metric import KittiMetric # noqa: F401,F403
from .lyft_metric import LyftMetric # noqa: F401,F403
from .nuscenes_metric import NuScenesMetric # noqa: F401,F403 from .nuscenes_metric import NuScenesMetric # noqa: F401,F403
__all_ = ['KittiMetric', 'NuScenesMetric', 'IndoorMetric'] __all_ = ['KittiMetric', 'NuScenesMetric', 'IndoorMetric', 'LyftMetric']
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os
import tempfile
from os import path as osp
from typing import Dict, List, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
import pandas as pd
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from lyft_dataset_sdk.utils.data_classes import Box as LyftBox
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from pyquaternion import Quaternion
from mmdet3d.core.evaluation.lyft_eval import lyft_eval
from mmdet3d.registry import METRICS
@METRICS.register_module()
class LyftMetric(BaseMetric):
"""Lyft evaluation metric.
Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file.
metric (str | list[str]): Metrics to be evaluated.
Default to 'bbox'.
modality (dict): Modality to specify the sensor data used
as input. Defaults to dict(use_camera=False, use_lidar=True).
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
jsonfile_prefix (str, optional): The prefix of json files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
csv_savepath (str, optional): The path for saving csv files.
It includes the file path and the csv filename,
e.g., "a/b/filename.csv". If not specified,
the result will not be converted to csv file.
collect_device (str): Device name used for collecting results
from different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
"""
def __init__(self,
data_root: str,
ann_file: str,
metric: Union[str, List[str]] = 'bbox',
modality=dict(
use_camera=False,
use_lidar=True,
),
prefix: Optional[str] = None,
jsonfile_prefix: str = None,
csv_savepath: str = None,
collect_device: str = 'cpu') -> None:
self.default_prefix = 'Lyft metric'
super(LyftMetric, self).__init__(
collect_device=collect_device, prefix=prefix)
self.ann_file = ann_file
self.data_root = data_root
self.modality = modality
self.jsonfile_prefix = jsonfile_prefix
self.csv_savepath = csv_savepath
self.metrics = metric if isinstance(metric, list) else [metric]
def load_annotations(self, ann_file: str) -> list:
"""Load annotations from ann_file.
Args:
ann_file (str): Path of the annotation file.
Returns:
list[dict]: List of annotations.
"""
# loading data from a pkl file
return mmcv.load(ann_file, file_format='pkl')
def process(self, data_batch: Sequence[dict],
predictions: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions.
The processed results should be stored in ``self.results``,
which will be used to compute the metrics when all batches
have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
predictions (Sequence[dict]): A batch of outputs from
the model.
"""
assert len(data_batch) == len(predictions)
for data, pred in zip(data_batch, predictions):
result = dict()
for pred_result in pred:
if pred[pred_result] is not None:
for attr_name in pred[pred_result]:
pred[pred_result][attr_name] = pred[pred_result][
attr_name].to(self.collect_device)
result[pred_result] = pred[pred_result]
sample_idx = data['data_sample']['sample_idx']
result['sample_idx'] = sample_idx
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
classes = self.dataset_meta['CLASSES']
self.version = self.dataset_meta['version']
# load annotations
self.data_infos = self.load_annotations(self.ann_file)['data_list']
result_dict, tmp_dir = self.format_results(results, classes,
self.jsonfile_prefix)
metric_dict = {}
for metric in self.metrics:
ap_dict = self.lyft_evaluate(
result_dict, metric=metric, logger=logger)
for result in ap_dict:
metric_dict[result] = ap_dict[result]
if tmp_dir is not None:
tmp_dir.cleanup()
return metric_dict
def format_results(self,
results: List[dict],
classes: List[str] = None,
jsonfile_prefix: str = None,
csv_savepath: str = None) -> Tuple:
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
classes (list[String], optional): A list of class name. Defaults
to None.
jsonfile_prefix (str, optional): The prefix of json files. It
includes the file path and the prefix of filename, e.g.,
"a/b/prefix". If not specified, a temp file will be created.
Default: None.
csv_savepath (str, optional): The path for saving csv files.
It includes the file path and the csv filename,
e.g., "a/b/filename.csv". If not specified,
the result will not be converted to csv file.
Returns:
tuple: Returns (result_dict, tmp_dir), where `result_dict` is a
dict containing the json filepaths, `tmp_dir` is the temporal
directory created for saving json files when
`jsonfile_prefix` is not specified.
"""
assert isinstance(results, list), 'results must be a list'
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
result_dict = dict()
sample_id_list = [result['sample_idx'] for result in results]
for name in results[0]:
if 'pred' in name and '3d' in name and name[0] != '_':
print(f'\nFormating bboxes of {name}')
# format result of model output in Det3dDataSample,
# include 'pred_instances_3d','pts_pred_instances_3d',
# 'img_pred_instances_3d'
results_ = [out[name] for out in results]
tmp_file_ = osp.join(jsonfile_prefix, name)
result_dict[name] = self._format_bbox(results_, sample_id_list,
classes, tmp_file_)
if csv_savepath is not None:
if 'pred_instances_3d' in result_dict:
self.json2csv(result_dict['pred_instances_3d'], csv_savepath)
elif 'pts_pred_instances_3d' in result_dict:
self.json2csv(result_dict['pts_pred_instances_3d'],
csv_savepath)
return result_dict, tmp_dir
def json2csv(self, json_path: str, csv_savepath: str) -> None:
"""Convert the json file to csv format for submission.
Args:
json_path (str): Path of the result json file.
csv_savepath (str): Path to save the csv file.
"""
results = mmcv.load(json_path)['results']
sample_list_path = osp.join(self.data_root, 'sample_submission.csv')
data = pd.read_csv(sample_list_path)
Id_list = list(data['Id'])
pred_list = list(data['PredictionString'])
cnt = 0
print('Converting the json to csv...')
for token in results.keys():
cnt += 1
predictions = results[token]
prediction_str = ''
for i in range(len(predictions)):
prediction_str += \
str(predictions[i]['score']) + ' ' + \
str(predictions[i]['translation'][0]) + ' ' + \
str(predictions[i]['translation'][1]) + ' ' + \
str(predictions[i]['translation'][2]) + ' ' + \
str(predictions[i]['size'][0]) + ' ' + \
str(predictions[i]['size'][1]) + ' ' + \
str(predictions[i]['size'][2]) + ' ' + \
str(Quaternion(list(predictions[i]['rotation']))
.yaw_pitch_roll[0]) + ' ' + \
predictions[i]['name'] + ' '
prediction_str = prediction_str[:-1]
idx = Id_list.index(token)
pred_list[idx] = prediction_str
df = pd.DataFrame({'Id': Id_list, 'PredictionString': pred_list})
mmcv.mkdir_or_exist(os.path.dirname(csv_savepath))
df.to_csv(csv_savepath, index=False)
def _format_bbox(self,
results: List[dict],
sample_id_list: List[int],
classes: List[str] = None,
jsonfile_prefix: str = None) -> str:
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
sample_id_list (list[int]): List of result sample id.
classes (list[String], optional): A list of class name. Defaults
to None.
jsonfile_prefix (str, optional): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
lyft_annos = {}
print('Start to convert detection format...')
for i, det in enumerate(mmcv.track_iter_progress(results)):
annos = []
boxes = output_to_lyft_box(det)
sample_id = sample_id_list[i]
sample_token = self.data_infos[sample_id]['token']
boxes = lidar_lyft_box_to_global(self.data_infos[sample_id], boxes)
for i, box in enumerate(boxes):
name = classes[box.label]
lyft_anno = dict(
sample_token=sample_token,
translation=box.center.tolist(),
size=box.wlh.tolist(),
rotation=box.orientation.elements.tolist(),
name=name,
score=box.score)
annos.append(lyft_anno)
lyft_annos[sample_token] = annos
lyft_submissions = {
'meta': self.modality,
'results': lyft_annos,
}
mmcv.mkdir_or_exist(jsonfile_prefix)
res_path = osp.join(jsonfile_prefix, 'results_lyft.json')
print('Results writes to', res_path)
mmcv.dump(lyft_submissions, res_path)
return res_path
def lyft_evaluate(self,
result_dict: dict,
metric: str = 'bbox',
logger: logging.Logger = None) -> dict:
"""Evaluation in Lyft protocol.
Args:
result_dict (dict): Formatted results of the dataset.
metric (str): Metrics to be evaluated.
Default: 'bbox'.
classes (list[String], optional): A list of class name. Defaults
to None.
logger (MMLogger, optional): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str, float]: Evaluation results.
"""
metric_dict = dict()
for name in result_dict:
print('Evaluating bboxes of {}'.format(name))
ret_dict = self._evaluate_single(
result_dict[name], logger=logger, result_name=name)
metric_dict.update(ret_dict)
return metric_dict
def _evaluate_single(self,
result_path: str,
logger: MMLogger = None,
result_name: str = 'pts_bbox') -> dict:
"""Evaluation for a single model in Lyft protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
metric (str): Metric name used for evaluation.
Default: 'bbox'.
result_name (str): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
output_dir = osp.join(*osp.split(result_path)[:-1])
lyft = Lyft(
data_path=osp.join(self.data_root, self.version),
json_path=osp.join(self.data_root, self.version, self.version),
verbose=True)
eval_set_map = {
'v1.01-train': 'val',
}
metrics = lyft_eval(lyft, self.data_root, result_path,
eval_set_map[self.version], output_dir, logger)
# record metrics
detail = dict()
metric_prefix = f'{result_name}_Lyft'
for i, name in enumerate(metrics['class_names']):
AP = float(metrics['mAPs_cate'][i])
detail[f'{metric_prefix}/{name}_AP'] = AP
detail[f'{metric_prefix}/mAP'] = metrics['Final mAP']
return detail
def output_to_lyft_box(detection: dict) -> List[LyftBox]:
"""Convert the output to the box class in the Lyft.
Args:
detection (dict): Detection results.
Returns:
list[:obj:`LyftBox`]: List of standard LyftBoxes.
"""
bbox3d = detection['bboxes_3d']
scores = detection['scores_3d'].numpy()
labels = detection['labels_3d'].numpy()
box_gravity_center = bbox3d.gravity_center.numpy()
box_dims = bbox3d.dims.numpy()
box_yaw = bbox3d.yaw.numpy()
# our LiDAR coordinate system -> Lyft box coordinate system
lyft_box_dims = box_dims[:, [1, 0, 2]]
box_list = []
for i in range(len(bbox3d)):
quat = Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
box = LyftBox(
box_gravity_center[i],
lyft_box_dims[i],
quat,
label=labels[i],
score=scores[i])
box_list.append(box)
return box_list
def lidar_lyft_box_to_global(info: dict,
boxes: List[LyftBox]) -> List[LyftBox]:
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`LyftBox`]): List of predicted LyftBoxes.
Returns:
list: List of standard LyftBoxes in the global
coordinate.
"""
box_list = []
for box in boxes:
# Move box to ego vehicle coord system
lidar2ego = np.array(info['lidar_points']['lidar2ego'])
box.rotate(Quaternion(matrix=lidar2ego, rtol=1e-05, atol=1e-07))
box.translate(lidar2ego[:3, 3])
# Move box to global coord system
ego2global = np.array(info['ego2global'])
box.rotate(Quaternion(matrix=ego2global, rtol=1e-05, atol=1e-07))
box.translate(ego2global[:3, 3])
box_list.append(box)
return box_list
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment